Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-11T17:20:10.256Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2015

Jan-Hendrik Evertse
Affiliation:
Universiteit Leiden
Kálmán Győry
Affiliation:
Debreceni Egyetem, Hungary
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczewski, B. and J. P., Bell (2012), On vanishing coefficients of algebraic power series over fields of positive characteristic, Invent. Math. 187, 343–393.CrossRefGoogle Scholar
Ahlgren, S. (1999), The set of solutions of a polynomial-exponential equation, Acta Arith. 87, 189–207.CrossRefGoogle Scholar
Allen, P. B. (2007),On the multiplicity of linear recurrence sequences, J. Number Theory 126, 212–216.CrossRefGoogle Scholar
Amoroso, F. and E., Viada (2009), Small points on subvarieties of a torus, Duke Math. J. 150, 407–442.CrossRefGoogle Scholar
Amoroso, F. and E., Viada (2011), On the zeros of linear recurrence sequences, Acta Arith. 147 (2011), 387–396.CrossRefGoogle Scholar
Arenas-Carmona, L., D., Berend and V., Bergelson (2008), Ledrappier's system is almost mixing of all orders, Ergodic Theory Dynam. Systems 28, 339–365.CrossRefGoogle Scholar
Aschenbrenner, M. (2004), Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc. 17, 407–442.CrossRefGoogle Scholar
Ashrafi, N. and P., Vámos (2005), On the unit sum number of some rings, Quart. J. Math. 56, 1–12.CrossRefGoogle Scholar
Baker, A. (1966), Linear forms in the logarithms of algebraic numbers, Mathematika 13, 204–216.CrossRefGoogle Scholar
Baker, A. (1967a), Linear forms in the logarithms of algebraic numbers, II, Mathematika 14, 102–107.Google Scholar
Baker, A. (1967b), Linear forms in the logarithms of algebraic numbers, III, Mathematika 14, 220–228.Google Scholar
Baker, A. (1968a), Linear forms in the logarithms of algebraic numbers, IV, Mathematika 15, 204–216.CrossRefGoogle Scholar
Baker, A. (1968b), Contributions to the theory of Diophantine equations, Philos. Trans. Roy. Soc. London, Ser. A 263, 173–208.Google Scholar
Baker, A. (1968c), The Diophantine equation y2 = ax3 + bx2 + cx + d, J. London Math. Soc. 43, 1–9.Google Scholar
Baker, A. (1969), Bounds for the solutions of the hyperelliptic equation, Proc. Camb. Philos. Soc. 65, 439–444.CrossRefGoogle Scholar
Baker, A. (1975), Transcendental number theory, Cambridge University Press.CrossRefGoogle Scholar
Baker, A., ed. (1988), New Advances in Transcendence Theory, Cambridge University Press.CrossRefGoogle Scholar
Baker, A. (1998), Logarithmic forms and the abc-conjecture, in: Number Theory Diophantine, Computational and AlgebraicAspects, Proc. Conf. Eger, 1966, K., Győry, A., Pethő and V. T., Sós, eds., de Gruyter, 37–44.Google Scholar
Baker, A. (2004), Experiments on the abc-conjecture, Publ. Math. Debrecen 65, 253–260.Google Scholar
Baker, A. and H., Davenport (1969), The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20, 129–137.CrossRefGoogle Scholar
Baker, A. and D. W., Masser, eds. (1977), Transcendence theory: advances and applications, Academic Press.
Baker, A. and G., Wüstholz (2007), Logarithmic Forms and Diophantine Geometry, Cambridge University Press.Google Scholar
Barroero, F., C., Frei and R. F., Tichy (2011), Additive unit representations in rings over global fields – a survey, Publ. Math. Debrecen 79, 291–307.Google Scholar
Belcher, P. (1974), Integers expressible as sums of distinct units, Bull. London Math. Soc. 6, 66–68.CrossRefGoogle Scholar
Bertók, Cs. (2013), Representing integers as sums or differences of general power products, Acta Math. Hungar. 141, 291–300.CrossRefGoogle Scholar
Bérczes, A. (2000), On the number of solutions of index form equations, Publ. Math. Debrecen 56, 251–262.Google Scholar
Bérczes, A. (2015a), Effective results for unit points over finitely generated domains, Math. Proc. Camb. Phil. Soc. 158, 331–353.CrossRefGoogle Scholar
Bérczes, A. (2015b), Effective results for division points on curves in G2m, J. Th.Nombers Bordeaux, to appear.
Bérczes, A., J.-H., Evertse and K., Győry (2004), On the number of equivalence classes of binary forms of given degree and given discriminant, Acta Arith. 113, 363–399.CrossRefGoogle Scholar
Bérczes, A., J.-H., Evertse and K., Győry (2007a), On the number of pairs of binary forms with given degree and given resultant, Acta Arith. 128, 19–54.CrossRefGoogle Scholar
Bérczes, A., J.-H., Evertse and K., Győry (2007b), Diophantine problems related to discriminants and resultants of binary forms, in: Diophantine Geometry, proceedings of a trimester held from April–July 2005, U., Zannier, ed., CRM series, Scuola Normale Superiore Pisa, pp. 45–63.Google Scholar
Bérczes, A., J.-H., Evertse and K., Győry (2009), Effective results for linear equations in two unknowns from a multiplicative division group, Acta Arith. 136, 331–349.CrossRefGoogle Scholar
Bérczes, A., J.-H., Evertse and K., Győry (2013), Multiply monogenic orders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12, 467–497.Google Scholar
Bérczes, A., J.-H., Evertse and K., Győry (2014), Effective results for Diophantine equations over finitely generated domains, Acta Arith. 163, 71–100.CrossRefGoogle Scholar
Bérczes, A., J.-H., Evertse, K., Győry and C., Pontreau (2009), Effective results for points on certain subvarieties of a tori, Math. Proc. Camb. Phil. Soc. 147, 69–94.CrossRefGoogle Scholar
Bérczes, A. and K., Győry (2002), On the number of solutions of decomposable polynomial equations, Acta Arith. 101, 171–187.CrossRefGoogle Scholar
Beukers, F. and H. P., Schlickewei (1996), The equation x + y = 1 in finitely generated groups, Acta. Arith. 78, 189–199.CrossRefGoogle Scholar
Beukers, F. and D., Zagier (1997), Lower bounds of heights of points on hypersurfaces, Acta Arith. 79, 103–111.CrossRefGoogle Scholar
Bilu, Yu. F. (1995), Effective analysis of integral points on algebraic curves, Israel J. Math. 90, 235–252.CrossRefGoogle Scholar
Bilu, Yu. F. (2002), Baker's method and modular curves, in: A Panorama of Number Theory, or The View from Baker's Garden, Proc. conf. ETH Zurich, 1999, G., Wüstholz, ed., Cambridge University Press, pp. 73–88.Google Scholar
Bilu, Yu. F. (2008), The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier, . . .], Séminaire Bourbaki, Vol. 2006/2007, Astérisque 317, Exp. No. 967, vii, 1–38.Google Scholar
Bilu, Yu. F. and Y., Bugeaud (2000), Démonstration du théor`eme de Baker-Feldman via les formes linéaires en deux logarithmes, J. Théorie des Nombres, Bordeaux, 12, 13–23.CrossRefGoogle Scholar
Bilu, Yu. F., I., Gaál and K., Győry (2004), Index form equations in sextic fields: a hard computation, Acta Arith. 115, 85–96.CrossRefGoogle Scholar
Bilu, Yu. F. and G., Hanrot (1996), Solving Thue equations of high degree, J. Number Theory, 60, 373–392.CrossRefGoogle Scholar
Bilu, Yu. F. and G., Hanrot (1998), Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112, 273–312.CrossRefGoogle Scholar
Bilu, Yu. F. and G., Hanrot (1999), Thue equations with composite fields, Acta Arith., 88, 311–326.CrossRefGoogle Scholar
Birch, B. J. and J. R., Merriman (1972), Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 24, 385–394.Google Scholar
Bombieri, E. (1993), Effective diophantine approximation on GM, Ann. Scuola Norm. Sup. Pisa (IV) 20, 61–89.Google Scholar
Bombieri, E. (1994), On the Thue-Mahler equation (II), Acta Arith. 67, 69–96.CrossRefGoogle Scholar
Bombieri, E. and P. B., Cohen (1997), Effective Diophantine approximation on Gm, II, Ann. Scuola Norm. Sup. Pisa (IV) 24, 205–225.Google Scholar
Bombieri, E. and P. B., Cohen (2003), An elementary approach to effective Diophantine approximation on Gm, in Number Theory and Algebraic Geometry, To Peter Swinaerton Dyer on his 75th birthday, London Math. Soc. Lecture Note Series 303, M., Reid and A., Skorobogatov, eds. Cambridge University Press, pp. 41–62.Google Scholar
Bombieri, E. and W., Gubler (2006), Heights in Diophantine Geometry, Cambridge University Press.Google Scholar
Bombieri, E., J., Mueller and M., Poe (1997), The unit equation and the cluster principle, Acta Arith. 79, 361–389.CrossRefGoogle Scholar
Bombieri, E., J., Mueller and U., Zannier (2001), Equations in one variable over function fields, Acta Arith. 99, 27–39.CrossRefGoogle Scholar
Bombieri, E. and W. M., Schmidt (1987), On Thue's equation, Invent. Math. 88, 69–81.CrossRefGoogle Scholar
Borevich, Z. I. and I. R., Shafarevich (1967), Number Theory, 2nd edn., Academic Press.Google Scholar
Borosh, I., M., Flahive, D., Rubin and B., Treybig (1989), A sharp bound for solutions of linear Diophantine equations, Proc. Amer. Math. Soc. 105, 844–846.CrossRefGoogle Scholar
Bosma, W., J., Cannon and C., Playoust (1997), The Magma algebra system I. The user languange, J. Symbolic Comput, 24, 235–265.CrossRefGoogle Scholar
Brindza, B. (1984), On S-integral solutions of the equation ym = f (x), Acta Math. Hungar. 44, 133–139.CrossRefGoogle Scholar
Brindza, B. and K., Győry (1990), On unit equations with rational coefficients, Acta Arith. 53, 367–388.CrossRefGoogle Scholar
Broberg, N. (1999), Some examples related to the abc-conjecture for algebraic number fields, Math. Comp. 69, 1707–1710.CrossRefGoogle Scholar
Browkin, J. (2000), The abc-conjecture, in: Number Theory, R. P., Bambah, V. C., Dumir and R. J., Hans-Gill, eds., Birkhäuser, pp. 75–105.Google Scholar
Brownawell, W. D. and D. W., Masser (1986), Vanishing sums in function fields, Math. Soc. Camb. Phil. Soc. 100, 427–434.Google Scholar
Brunotte, H., A., Huszti and A., Pethő (2006), Bases of canonical number systems in quartic number fields, J. Théor. Nombres Bordeaux 18, 537–557.CrossRefGoogle Scholar
Bugeaud, Y. (1998), Bornes effectives pour les solutions des équations en S-unités et des équations de Thue-Mahler, J. Number Theory 71, 227–244.CrossRefGoogle Scholar
Bugeaud, Y. (2011), Quantitative versions of the subspace theorem and applications, J. Théor. Nombres Bordeaux 23, 35–57.CrossRefGoogle Scholar
Bugeaud, Y. (2012), Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics 193, Cambridge University Press.Google Scholar
Bugeaud, Y. and K., Győry (1996a), Bounds for the solutions of unit equations, Acta Arith. 74, 67–80.CrossRefGoogle Scholar
Bugeaud, Y. and K., Győry (1996b), Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74, 273–292.CrossRefGoogle Scholar
Bugeaud, Y. and F., Luca (2004), A quantitative lower bound for the greatest prime factor of (ab + 1)(bc + a)(ca + 1), Acta Arith. 114, 275–294.CrossRefGoogle Scholar
Bundschuh, P. and F.-J., Wylegala (1980), Über algebraische Unabhängigkeit bei gewissen nichtfortsetzbaren Potenzreihen, Arch. Math. 34, 32–36.CrossRefGoogle Scholar
Canci, J. K. (2007), Finite orbits for rational functions, Indag. Mathem., N.S. 18, 203–214.CrossRefGoogle Scholar
Cassels, J. W. S. (1959), An Introduction to the Geometry of Numbers, Springer Verlag.CrossRefGoogle Scholar
Cijsouw, P. L. and R., Tijdeman (1973), On the transcendence of certain power series of algebraic numbers, Acta Arith. 23, 301–305.CrossRefGoogle Scholar
Coates, J. (1969), An effective p-adic analogue of a theorem of Thue, Acta Arith. 15, 279–305.CrossRefGoogle Scholar
Coates, J. (1970), An effective p-adic analogue of a theorem of Thue II, The greatest prime factor of a binary form, Acta Arith, 16, 392–412.CrossRefGoogle Scholar
Cohen, H. (1993), A Course in Computational Algebraic Number Theory, Springer Verlag.CrossRefGoogle Scholar
Cohen, H. (2000), Advanced Topics in Computational Number Theory, Springer Verlag.CrossRefGoogle Scholar
Conway, J. H. and A. J., Jones (1976), Trigonometric Diophantine equations (on vanishing sums of roots of unity), Acta Arith. 30, 229–240.CrossRefGoogle Scholar
Corvaja, P., W. M., Schmidt and U., Zannier (2010), The Diophantine equation αx11 · · · αxnn = f (x1, . . ., xn) II, Trans. Amer. Math. Soc. 362, 2115–2123.Google Scholar
Corvaja, P. and U., Zannier (2002a), A subspace theorem approach to integral points on curves, C.R. Math. Acad. Sci. Paris 334, 267–271.CrossRefGoogle Scholar
Corvaja, P. and U., Zannier (2002b), Some new applications of the subspace theorem, Compos. Math. 131, 319–340.CrossRefGoogle Scholar
Corvaja, P. and U., Zannier (2003), On the greatest prime factor of (ab + 1)(ac + 1), Proc. Amer. Math. Soc. 131, 1705–1709.CrossRefGoogle Scholar
Corvaja, P. and U., Zannier (2004a), On a general Thue's equation, Amer. J. Math. 126, 1033–1055.CrossRefGoogle Scholar
Corvaja, P. and U., Zannier (2004b), On integral points on surfaces, Ann. Math. 160, 705–726.CrossRefGoogle Scholar
Corvaja, P. and U., Zannier (2006), On the integral points on certain surfaces, Int. Math. Res. Not. Art.ID 98623, 20 pp.Google Scholar
Corvaja, P. and U., Zannier (2008), Applications of the Subspace Theorem to certain Diophantine problems: a survey of some recent results, in: Diophantine Approximation, Festschrift for Wolfgang Schmidt, H. P., Schlickewei, K., Schmidt and R., Tichy, eds., Springer Verlag, pp. 161–174.Google Scholar
Daberkow, M., C., Fieker, J., Klüners, M., Pohst, K., Roegner and K., Wildanger (1997), KANT V4, J. Symbolic Comput. 24, 267–283.CrossRefGoogle Scholar
David, S. and P., Philippon (1999), Minorations des hauteurs normalisées des sousvari étés des tores, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, 489–543, Errata, 29, 729–731.Google Scholar
Delone (Delaunay), B. N. (1930), Über die Darstellung der Zahlen durch die binären kubischen Formen von negativer Diskriminante, Math. Z, 31, 1–26.Google Scholar
Delone, B. N. and D. K., Faddeev (1940), The theory of irrationalities of the third degree (Russian), Inst. Math. Steklov 11, Acad. Sci. USSR. English translation, Amer. Math. Soc., 1964.
Derksen, H. (2007), A Skolem-Mahler-Lech theorem in positive characteristic and finite automata, Invent. Math. 168, 175–244.CrossRefGoogle Scholar
Derksen, H. and D. W., Masser (2012), Linear equations over multiplicative groups, recurrences, and mixing I, Proc. London Math. Soc. 104, 1045–1083.CrossRefGoogle Scholar
Dombek, D., L., Hajdu and A., Pethő (2014), Representing algebraic integers as linear combinations of units, Period. Math. Hung. 68, 135–142.CrossRefGoogle Scholar
Dubois, E. and G., Rhin (1975) Approximation rationnelles simultanées de nombres algébriques réels et de nombres algébriques p-adiques, in: Journées Arithmétiques de Bordeaux (Conf. Univ. Bordeaux, 1974), W. W., Adams, ed., Astérisque 24/25, Soc. Math. France, pp. 211–227.Google Scholar
Dubois, E. and G., Rhin (1976), Sur la majoration de formes linéaires à coefficients algébriques réels et p-adiques. Démonstration d'une conjecture de K. Mahler, C.R. Acad. Sci. Paris Sér. A-B 282, A1211–A1214.Google Scholar
Dvornicich, R. and U., Zannier (2000), On sums of roots of unity, Monatsh. Math. 129, 97–108.CrossRefGoogle Scholar
Dyson, F. J. (1947), The approximation of algebraic numbers by rationals, Acta Math. 79, 225–240.CrossRefGoogle Scholar
Eichler, M. (1966), Introduction to the theory of algebraic numbers and functions, Academic Press.Google Scholar
Elkies, N. D. (1991), ABC implies Mordell, Int. Math. Res. Not. 7, 99–109.Google Scholar
Erdős, P. (1976), Problems in number theory and combinatorics, Proc. 6th Manitoba Conference on Numerical Math. pp. 35–58.Google Scholar
Erdős, P., C. L., Stewart and R., Tijdeman (1988), Some Diophantine equations with many solutions, Compos. Math. 66, 37–56.Google Scholar
Erdős, P. and P., Turán (1934), On a problem in the elementary theory of numbers, Amer. Math. Monthly 41, 608–611.CrossRefGoogle Scholar
Everest, G. R. and K., Győry (1997), Counting solutions of decomposable form equations, Acta Arith. 79, 173–191.CrossRefGoogle Scholar
Evertse, J.-H. (1983), Upper bounds for the numbers of solutions of Diophantine equations,Ph.D. thesis, University of Leiden, Leiden. Also published as Math. Centre Tracts No. 168, CWI, Amsterdam.Google Scholar
Evertse, J.-H. (1984a), On equations in S-units and the Thue-Mahler equation, Invent. Math. 75, 561–584.CrossRefGoogle Scholar
Evertse, J.-H. (1984b), On sums of S-units and linear recurrences, Compos. Math. 53, 225–244.Google Scholar
Evertse, J.-H. (1993), Estimates for reduced binary forms, J. Reine Angew. Math. 434, 159–190.Google Scholar
Evertse, J.-H. (1995), The number of solutions of decomposable form equations, Invent. Math. 122, 559–601.CrossRefGoogle Scholar
Evertse, J.-H. (1996), An improvement of the quantitative subspace theorem, Compos. Math. 101, 225–311.Google Scholar
Evertse, J.-H. (1997), The number of solutions of the Thue-Mahler equation, J. Reine Angew. Math. 482, 121–149.Google Scholar
Evertse, J.-H. (1998), Lower bounds for resultants, II, in: Number Theory, Diophantine, Computational and Algebraic Aspects, Proc. Conf. Eger, Hungary, 1996, K., Győry, A., Pethö, V. T., Sós, eds., Walter de Gruyter, pp. 181–198.Google Scholar
Evertse, J.-H. (1999), The number of solutions of linear equations in roots of unity, Acta Arith. 89, 45–51.CrossRefGoogle Scholar
Evertse, J.-H. (2002), Points on subvarieties of tori, in: A Panorama of Number Theory, or the View from Baker's Garden, Proc. conf. ETH Zürich, 1999, G., Wüstholz, ed., Cambridge University Press, pp. 214–230.Google Scholar
Evertse, J.-H. (2004), Linear equations with unknowns from a multiplicative group whose solutions lie in a small number of subspaces, Indag. Math. (N.S.) 15, 347–355.CrossRefGoogle Scholar
Evertse, J.-H. and R. G., Ferretti (2002), Diophantine inequalities on projective varieties, Int. Math. Res. Not. 2002:25, 1295–1130.Google Scholar
Evertse, J.-H. and R. G., Ferretti (2008), A generalization of the Subspace Theorem with polynomials of higher degree, in: Diophantine Approximation, Festschrift for Wolfgang Schmidt, H. P., Schlickewei, K., Schmidt and R., Tichy, eds., Springer Verlag, pp. 175–198.Google Scholar
Evertse, J.-H. and R. G., Ferretti (2013), A further improvement of the Quantitative Subspace Theorem, Ann. Math. 177, 513–590.CrossRefGoogle Scholar
Evertse, J.-H., I., Gaál and K., Győry (1989), On the numbers of solutions of decomposable polynomial equations, Arch. Math. 52, 337–353.CrossRefGoogle Scholar
Evertse, J.-H. and K., Győry (1985), On unit equations and decomposable form equations, J. Reine Angew. Math. 358, 6–19.
Evertse, J.-H. and K., Győry (1988a), On the number of polynomials and integral elements of given discriminant, Acta. Math. Hung. 51, 341–362.CrossRefGoogle Scholar
Evertse, J.-H. and K., Győry (1988b), On the number of solutions of weighted unit equations, Compos. Math. 66, 329–354.Google Scholar
Evertse, J.-H. and K., Győry (1988c), Finiteness criteria for decomposable form equations, Acta Arith. 50, 357–379.CrossRefGoogle Scholar
Evertse, J.-H. and K., Győry (1988d), Decomposable form equations, in: New Advances in Transcendence Theory, Proc. conf. Durham 1986, A., Baker, ed., pp. 175–202.Google Scholar
Evertse, J.-H. and K., Győry (1989), Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399, 60–80.Google Scholar
Evertse, J.-H. and K., Győry (1991), Effective finiteness results for binary forms with given discriminant, Compositio Math., 79, 169–204.Google Scholar
Evertse, J.-H. and K., Győry (1992a), Effective finiteness theorems for decomposable forms of given discriminant, Acta. Arith. 60, 233–277.CrossRefGoogle Scholar
Evertse, J.-H. and K., Győry (1992b), Discriminants of decomposable forms, in: New Trends in Probability and Statistics, F., Schweiger and E., Manstavičius, eds., pp. 39–56.Google Scholar
Evertse, J.-H. and K., Győry (1993), Lower bounds for resultants, I, Compositio Math. 88, 1–23.Google Scholar
Evertse, J.-H. and K., Győry (1997), The number of families of solutions of decomposable form equations, Acta. Arith. 80, 367–394.CrossRefGoogle Scholar
Evertse, J.-H. and K., Győry (2013), Effective results for unit equations over finitely generated domains, Math. Proc. Camb. Phil. Soc. 154, 351–380.CrossRefGoogle Scholar
Evertse, J.-H. and K., Győry (2016), Discriminant Equations in Diophantine Number Theory, Cambridge: Cambridge University Press, to appear.Google Scholar
Evertse, J.-H., K., Győry, C. L., Stewart and R., Tijdeman (1988a), On S-unit equations in two unknowns, Invent. math. 92, 461–477.CrossRefGoogle Scholar
Evertse, J.-H., K., Győry, C. L., Stewart and R., Tijdeman (1988b), S-unit equations and their applications, in: New Advances in Transcendence Theory, Proc. conf. Durham 1986, A., Baker, ed., pp. 110–174. Cambridge University Press.Google Scholar
Evertse, J.-H., P., Moree, C. L., Stewart and R., Tijdeman (2003), Multivariate equations with many solutions, Acta Arith. 107 (2003), 103–125.CrossRefGoogle Scholar
Evertse, J.-H. and H. P., Schlickewei (1999), The Absolute Subspace Theorem and linear equations with unknowns from a multiplicative group, in: Number Theory in Progress, proc. conf. Zakopane 1997 in honour of the 60th birthday of Prof.Andrzej, Schinzel, K., Győry, H., Iwaniec and J., Urbanowicz, eds.,Walter de Gruyter, pp. 121–142.Google Scholar
Evertse, J.-H. and H. P., Schlickewei (2002), A quantitative version of the Absolute Subspace Theorem, J. Reine Angew. Math. 548, 21–127.Google Scholar
Evertse, J.-H., H. P., Schlickewei and W. M., Schmidt (2002), Linear equations in variables which lie in a multiplicative group, Ann. Math. 155, 807–836.CrossRefGoogle Scholar
Evertse, J.-H. and J.-H., Silverman (1986), Uniform bounds for the number of solutions to Yn = f (X), Math. Proc. Camb. Phil. Soc. 100, 237–248.CrossRefGoogle Scholar
Evertse, J.-H. and U., Zannier (2008), Linear equations with unknowns from a multiplicative group in a function field, Acta Arith. 133, volume dedicated to the 75th birthday of Wolfgang Schmidt, 157–170.Google Scholar
Faltings, G. (1983), Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73, 349–366, Erratum: Invent. Math. 75 (1984), 381.Google Scholar
Faltings, G. (1991), Diophantine approximation on abelian varieties, Ann. Math. 133, 549–576.CrossRefGoogle Scholar
Faltings, G. (1994), The general case of S. Lang's conjecture, in: Bersotti symposium in Algebraic Geometry (Abano Terme, 1991), 175–182, Perspect. Math. 15, Academic Press.Google Scholar
Faltings, G. and G., Wüstholz (1994), Diophantine approximations on projective spaces, Invent. Math. 116, 109–138.CrossRefGoogle Scholar
Feldman, N. I. and Y. V., Nesterenko (1998), Transcendental numbers, Springer Verlag, Vol. 44 of Encyclopaedia of Math. Sci.Google Scholar
Filipin, A., R. F., Tichy and V., Ziegler (2008), The additive unit structure of pure quartic complex fields, Funct. Approx. Comment. Math. 39, 113–131.CrossRefGoogle Scholar
Fincke, U. and M., Pohst (1985), Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44, 463–471.CrossRefGoogle Scholar
Frei, C. (2012), On rings of integers generated by their units, Bull. London Math. Soc. 44, 167–182.CrossRefGoogle Scholar
Friedman, E. (1989), Analytic formulas for regulators of number fields, Invent. Math. 98, 599–622.CrossRefGoogle Scholar
Fröhlich, A. and J. C., Shepherdson (1956), Effective procedures in field theory, Philos. Trans. Roy. Soc.London, Ser. A 248, 407–432.CrossRefGoogle Scholar
Gaál, I. (1984), Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients, Studia Sci. Math. Hungar 19, 399–411.Google Scholar
Gaál, I. (1985), Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients, II, Studia Sci. Math. Hungar 20, 333–344.Google Scholar
Gaál, I. (1986), Inhomogeneous discriminant form and index form equations and their applications, Publ. Math. Debrecen 33, 1–12.Google Scholar
Gaál, I. (1988a), Integral elements with given discriminant over function fields, Acta Math. Hungar. 52, 133–146.CrossRefGoogle Scholar
Gaál, I. (1988b), Inhomogeneous norm form equations over function fields, Acta Arith. 51, 61–73.CrossRefGoogle Scholar
Gaál, I. (2002), Diophantine equations and power integral bases, Birkhäuser.CrossRefGoogle Scholar
Gaál, I. and M., Pohst (2002), On the resolution of relative Thue equations, Math. Comp. 71, no. 237, 429–440 (electronic).Google Scholar
Gaál, I. and M., Pohst (2006a), Diophantine equations over global function fields I, The Thue equation, J. Number Theory 119, 49–65.CrossRefGoogle Scholar
Gaál, I. and M., Pohst (2006b), Diophantine equations over global function fields II, S-integral solutions of Thus equations, Exper. Math. 15, 1–6.CrossRefGoogle Scholar
Gaál, I. and M., Pohst (2010), Diophantine equations over global function fields IV, S-unit equations in several variables with an application to norm form equations, J. Number Theory 130, 493–506.CrossRefGoogle Scholar
Gebel, J., A., Pethő and H. G., Zimmer (1994), Computing integral points on elliptic curves, Acta Arith. 67, 171–192.Google Scholar
Gelfond, A. O. (1934), Sur le septième problème de Hilbert, Izv. Akad. Nauk SSSR 7, 623–630.
Gelfond, A. O. (1935), On approximating transcendental numbers by algebraic numbers, Dokl. Akad. Nauk SSSR 2, 177–182.Google Scholar
Gelfond, A. O. (1940), Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d'un idéal premier, Mat. Sbornik 7(49), 7–26.Google Scholar
Gelfond, A. O. (1960), Transcendental and algebraic numbers, New York, Dover.Google Scholar
Ghioca, D. (2008), The isotrivial case in the Mordell-Lang theorem, Trans. Amer. Math. Soc. 360, 3839–3856.CrossRefGoogle Scholar
Grant, D. (1996), Sequences of Fields with Many Solutions to the Unit Equation, The Rocky Mountain J. Math. 26, 1017–1029.CrossRefGoogle Scholar
Granville, A. (1998), ABC allow us to count squarefrees, Int. Math. Res. Not. 19, 991–1009.Google Scholar
Granville, A. and H. M., Stark (2000), abc implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math. 139, 509–523.CrossRefGoogle Scholar
Green, B. and T., Tao (2008), The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167, 481–547.CrossRefGoogle Scholar
Győry, K. (1971), Sur l'irréductibilité d'une classe des polynômes, I, Publ. Math. Debrecen 18, 289–307.Google Scholar
Győry, K. (1972), Sur l'irréductibilité d'une classe des polynômes, II, Publ. Math. Debrecen 19, 293–326.Google Scholar
Győry, K. (1973), Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23, 419–426.CrossRefGoogle Scholar
Győry, K. (1974), Sur les polynômes à coefficients entiers et de discriminant donné II, Publ. Math. Debrecen 21, 125–144.Google Scholar
Győry, K. (1976), Sur les polynômes à coefficients entiers et de discriminant donné III, Publ. Math. Debrecen 23, 141–165.Google Scholar
Győry, K. (1978a), On polynomials with integer coefficients and given discriminant IV, Publ. Math. Debrecen 25, 155–167.Google Scholar
Győry, K. (1978b), On polynomials with integer coefficients and given discriminant V, p-adic generalizations, Acta Math. Acad. Sci. Hung. 32, 175–190.Google Scholar
Győry, K. (1978/1979), On the greatest prime factors of decomposable forms at integer points, Ann. Acad. Sci. Fenn., Ser. A I, Math. 4, 341–355.Google Scholar
Győry, K. (1979), On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54, 583–600.CrossRefGoogle Scholar
Győry, K. (1979/1980), On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math. 22–23, 225–233.Google Scholar
Győry, K. (1980a), Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn., Ser A I, Math. 5, 3–12.CrossRefGoogle Scholar
Győry, K. (1980b), Résultats effectifs sur la représentation des entiers par des formes désomposables, Queen's Papers in Pure and Applied Math., No.56.Google Scholar
Győry, K. (1980c), On certain graphs composed of algebraic integers of a number field and their applications I, Publ. Math.Debrecen 27, 229-242.Google Scholar
Győry, K. (1981a), On the representation of integers by decomposable forms in several variables, Publ. Math.Debrecen 28, 89–98.Google Scholar
Győry, K. (1981b), On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math.Hungar 16, 149–161.Google Scholar
Győry, K. (1981c), On discriminants and indices of integers of an algebraic number field, J. Reine Angew. Math. 324, 114–126.Google Scholar
Győry, K. (1982a), Polynomials of given discriminant and integral elements of given discriminant over integral domains, C. R. Math. Rep. Acad. Sci.Canada 4, 75–80.Google Scholar
Győry, K. (1982b), On certain graphs associated with an integral domain and their applications to Diophantine problems, Publ. Math.Debrecen 29, 79–94.Google Scholar
Győry, K. (1982c), On the irreducibility of a class of polynomials III. J. Number Theory 15, 164–181.CrossRefGoogle Scholar
Győry, K. (1983), Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains, Acta Math. Hung. 42, 45–80.Google Scholar
Győry, K. (1984), Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346, 54–100.Google Scholar
Győry, K. (1990), On arithmetic graphs associated with integral domains, in: A Tribute to Paul Erdős, Cambridge University Press, pp. 207–222.Google Scholar
Győry, K. (1992a), Some recent applications of S-unit equations, Astérisque 209, 17–38.Google Scholar
Győry, K. (1992b), Upper bounds for the numbers of solutions of unit equations in two unknowns, Lithuanian Math. J. 32, 40–44.CrossRefGoogle Scholar
Győry, K. (1992c), On the irreducibility of a class of polynomials IV, Acta Arith. 62, 399–405.CrossRefGoogle Scholar
Győry, K. (1993a), On the numbers of families of solutions of systems of decomposable form equations, Publ. Math.Debrecen 42, 65–101.Google Scholar
Győry, K. (1993b), Some applications of decomposable form equations to resultant equations, Coll. Math. 65, 267–275.Google Scholar
Győry, K. (1993c), On the number of pairs of polynomials with given resultant or given semi-resultant, Acta Sci. Math. 57, 515–529.Google Scholar
Győry, K. (1994), On the irreducibility of neighbouring polynomials, Acta. Arith. 67, 283–294.CrossRefGoogle Scholar
Győry, K. (1996), Applications of unit equations, in: Analytic Number Theory, RIMS Kokyusoku 958, Kyoto, Japan, pp. 62–78.Google Scholar
Győry, K. (1998), Bounds for the solutions of decomposable form equations, Publ. Math.Debrecen 52, 1–31.Google Scholar
Győry, K. (1999), On the distribution of solutions of decomposable form equations, in: Number Theory in Progress, Proc. conf. in honour of 60th birthday of Andrzej, Schinzel, K., Győry, H., Iwaniec and J., Urbanowicz, eds., de Gruyter, pp. 237– 365.CrossRefGoogle Scholar
Győry, K. (2002), Solving diophantine equations by Baker's theory, in: A Panorama of Number Theory, Cambridge, pp. 38–72.Google Scholar
Győry, K. (2006), Polynomials and binary forms with given discriminant, Publ. Math.Debrecen 69, 473–499.Google Scholar
Győry, K. (2008a), On the abc-conjecture in algebraic number fields, Acta Arith. 133, 281–295.CrossRefGoogle Scholar
Győry, K. (2008b), On certain arithmetic graphs and their applications to diophantine problems, Funct. Approx. Comment. Math., 39, 289–314.CrossRefGoogle Scholar
Győry, K. (2010), S-unit equations in number fields: effective results, generalizations, ABC-conjecture, in: Analytic number theory and related topics, RIMS Kokyusoku 1710, pp. 71–84.Google Scholar
Győry, K., L., Hajdu and R., Tijdeman (2011), Irreducibility criteria of Schur-type and Pólya-type, Monatsh. Math. 163, 415–443.CrossRefGoogle Scholar
Győry, K., L., Hajdu and R., Tijdeman (2014), Representation of finite graphs as difference graphs of S-units, I, J. Combinatorial Theory, Ser. A, 127, 314–335.Google Scholar
Győry, K. and Z. Z., Papp (1977), On discriminant form and index form equations, Studia Sci. Math.Hungar. 12, 47–60.Google Scholar
Győry, K. and Z. Z., Papp (1978), Effective estimates for the integer solutions of norm form and discriminant form equations, Publ. Math.Debrecen 25, 311–325.Google Scholar
Győry, K. and A., Pethő (1980), Über die Verteilung der Lösungen von Normformen Gleichungen III, Acta Arith. 37, 143–165.CrossRefGoogle Scholar
Győry, K., I., Pink and Á., Pintér (2004), Power values of polynomials and binomial Thue-Mahler equations, Publ. Math.Debrecen 65, 341–362.Google Scholar
Győry, K. and Á ., Pintér (2008), Polynomial powers and a common generalization of binomial Thue-Mahler equations and S-unit equations, in: Diophantine Equations, Proc. conf. in honour of Tarlok Shorey's 60th birthday, N., Saradha, ed., New Delhi, pp. 103–119.Google Scholar
Győry, K. and M., Ru (1998), Integer solutions of a sequence of decomposable form inequalities, Acta Arith. 86, 227–237.CrossRefGoogle Scholar
Győry, K., A., Sárközy and C. L., Stewart (1996), On the number of prime factors of integers of the form ab + 1, Acta Arith. 74, 365–385.CrossRefGoogle Scholar
Győry, K. and A., Schinzel (1994), On a conjecture of Posner and Rumsey, J. Number Theory, 47, 63–78.CrossRefGoogle Scholar
Győry, K., C. L., Stewart and R., Tijdeman (1986), On prime factors of sums of integers I, Compositio Math 59, 81–88.Google Scholar
Győry, K. and K., Yu (2006), Bounds for the solutions of S-unit equations and decomposable form equations, Acta Arith. 123, 9–41.CrossRefGoogle Scholar
Hajdu, L. (1993), A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42, 239–246.Google Scholar
Hajdu, L. (1997), On a problem of Győry and Schinzel concerning polynomials, Acta Arith. 78, 287–295.CrossRefGoogle Scholar
Hajdu, L. (2007), Arithmetic progressions in linear combinations of S-units, Period. Math. Hung. 54, 175–181.CrossRefGoogle Scholar
Hajdu, L. (2009), Optimal systems of fundamental S-units for LLL-reduction, Periodica Math. Hung. 59, 79–105.CrossRefGoogle Scholar
Hajdu, L. and F., Luca (2010), On the length of arithmetic progressions in linear combinations of S-units, Archiv Math. 94, 357–363.CrossRefGoogle Scholar
Hajdu, L. and R., Tijdeman (2003), Polynomials dividing infinitely many quadrinomials or quintinomials, Acta Arith. 107, 381–404.CrossRefGoogle Scholar
Hajdu, L. and R., Tijdeman (2008), A criterion for polynomials to divide infinitely many k-nomials, in: Diophantine Approximation, Festschrift forWolfgang Schmidt, H. P., Schlickewei, K., Schmidt and R., Tichy, eds., Springer Verlag, pp. 175–198.Google Scholar
Halter-Koch, F. and W., Narkiewicz (1997), Polynomial cycles and dynamical units, in: Proc. Conf. Analytic and Elementary Number Theory, dedicated to the 80th birthday of E. Hlawka, W. G., Nowak and J., Schoißengeier, eds., Wien, 1997, 70–80.Google Scholar
Halter-Koch, F. and W., Narkiewicz (2000), Scarcity of finite polynomial orbits, Publ. Math. Debrecen 56, 405–414.Google Scholar
Hardy, G. H. and E. M., Wright (1980), An introduction to the theory of numbers, 5th. edn., Oxford University Press.Google Scholar
Haristoy, J. (2003), Équations diophantiennes exponentielles, Thèse de docteur, Strasbourg.Google Scholar
Harris, J. (1992), Algebraic Geometry, A First Course, Springer Verlag.Google Scholar
Hartshorne, R. (1977), Algebraic Geometry, Springer Verlag.CrossRefGoogle Scholar
Hermann, G. (1926), Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95, 736–788.CrossRefGoogle Scholar
Hermite, C. (1851), Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. 41, 191–216.Google Scholar
Hernández, S. and F., Luca (2003), On the largest prime factor of (ab + 1)(ac + 1)(bc + 1), Bol. Soc. Mat. Mexicana, 9, 235–244.Google Scholar
Hindry, M. (1988), Autour d'une Conjecture de Serge Lang, Invent. Math. 94, 575–603.CrossRefGoogle Scholar
Houriet, J. (2007), Exceptional units and Euclidean number fields, Archiv Math. 88, 425–433.CrossRefGoogle Scholar
Hrushovki, E. (1996), The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc. 9, 667–690.Google Scholar
Hsia, L.-C. and J. T.-Y., Wang (2004), The ABCtheorem for higher-dimensional function fields, Trans. Amer. Math. Soc. 356, no. 7, 2871–2887.CrossRefGoogle Scholar
Jarden, M. and W., Narkiewicz (2007), On sums of units, Monatsh. Math. 150, 327–332.CrossRefGoogle Scholar
de Jong, R. S. (1999), On p-adic norm form inequalities, Master thesis, Leiden.
de Jong, R. S. and G., Rémond (2011), Conjecture de Shafarevich effective pour les revêtements cycliques, Algebra and Number Theory 5, 1133–1143.
von Känel, R. (2011), An effective proof of the hyperelliptic Shafarevich conjecture and applications, Ph.D. thesis, ETH Zürich.
von Känel, R. (2013), On Szpiro's discriminant conjecture, Internat.Math. Res. Notices 1–35. Published online: doi:10.193/imrn/vnt079.Google Scholar
von Känel, R. (2014a), An effective proof of the hyperelliptic Shafarevich conjecture, J. Théorie des Nombres, Bordeaux, 26, 507–530.CrossRefGoogle Scholar
von Känel, R. (2014b) Modularity and integral points on moduli schemes, arXiv:1310.7263v2 [math.NT].
Karpilovsky, G. (1988), Unit groups of classical rings, Oxford University Press.Google Scholar
Koblitz, N. (1984), p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer Verlag.CrossRefGoogle Scholar
Konyagin, S. and K., Soundararajan (2007), Two S-unit equations with many solutions, J. Number Theory 124, 193–199.CrossRefGoogle Scholar
Kotov, S. V. (1981), Effective bound for a linear form with algebraic coefficients in the archimedean and p-adic metrics, Inst. Math. Akad. Nauk BSSR, Preprint No. 24, Minsk (Russian).Google Scholar
Kotov, S. V. and V. G., Sprindžuk (1973), An effective analysis of the Thue-Mahler equation in relative fields, Dokl. Akad. Nauk BSSR 17, 393–395 (Russian).Google Scholar
Kotov, S. V. and L., Trelina (1979), S-ganze Punkte auf elliptischen Kurven, J. Reine Angew. Math. 306, 28–41.Google Scholar
Kovács, B. (1981), Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37, 405–407.CrossRefGoogle Scholar
Kovács, B. and A., Pethő (1991), Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. 55, 287–299.Google Scholar
Koymans, P. (2015), The Catalan Equation, Master thesis, Leiden University.
Lagarias, J. C. and K., Soundararajan (2011), Smooth solutions to the abc equation: the xyz conjecture, J. Théorie des Nombres de Bordeaux 23, 209–234.CrossRefGoogle Scholar
Lagrange, J. L. (1773), Recherches d'arithmétiques, Nouv.Mém. Acad. Berlin, 265–312; Oeuvres III, 693–758.Google Scholar
Landau, E. (1918), Verallgemeinerung eines Pólyaschen Satzes auf algebraische Zahlkörper, Nachr. Ges. Wiss. G¨ottingen, 478–488.Google Scholar
Lang, S. (1960), Integral points on curves, Inst.Hautes E´tudes Sci. Publ.Math. 6, 27–43.Google Scholar
Lang, S. (1962), Diophantine geometry, Wiley.Google Scholar
Lang, S. (1970), Algebraic Number Theory, Addison-Wesley.Google Scholar
Lang, S. (1978), Elliptic curves: Diophantine analysis, Springer Verlag.CrossRefGoogle Scholar
Lang, S. (1983), Fundamentals of Diophantine Geometry, Springer Verlag.CrossRefGoogle Scholar
Lang, S. (1984), Algebra, 2nd. edn., Addison-Wesley.Google Scholar
Langevin, M. (1999), Liens entre le théorème de Mason et la conjecture (abc), in: Number Theory (5th conf. ofCNTA, OttawaON1996),R., Gupta and K. S., Williams, eds. 187–213. CRM Proc. Lecture Notes 19, AMS, Providence RI.Google Scholar
Laurent, M. (1984), Équations diophantiennes exponentielles, Invent. Math. 78, 299–327.CrossRefGoogle Scholar
Laurent, M. (1989), Équations exponentielles polynômes et suites récurrentes linéaires, II, J. Number Theory 31, 24–53.CrossRefGoogle Scholar
Lech, C. (1953), A note on recurring series, Ark. Math. 2, 417–421.CrossRefGoogle Scholar
Lehmer, D. H. (1933), Factorization of certain cyclotomic functions, Ann. Math. (2) 34, 461–479.CrossRefGoogle Scholar
Leitner, D. J. (2012), Linear equations over multiplicative groups in positive characteristic, Acta Arith. 153, 325–347.CrossRefGoogle Scholar
Lenstra Jr., H. W. (1977), Euclidean number fields of large degree, Inventiones Math. 38, 237–254.Google Scholar
Lenstra, A. K., H. W., Lenstra Jr. and L., Lovász (1982), Factoring polynomials with rational coefficients, Math. Ann. 261, 515–534.CrossRefGoogle Scholar
Leutbecher, A. (1985), Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier 35, 83–106.CrossRefGoogle Scholar
Leutbecher, A. and J., Martinet (1982), Lenstra's constant and euclidean number fields, Astérisque 94, 87–131.Google Scholar
Leutbecher, A. and G., Niklasch (1989), On cliques of exceptional units and Lenstra's construction of Euclidean fields, Lecture Notes Math. 1380, 150–178.Google Scholar
LeVeque, W. J. (1964), On the equation ym = f (x), Acta Arith. 9, 209–219.Google Scholar
LeVesque, C. and M., Waldschmidt (2011), Some remarks on diophantine equations and diophantine approximation, Vietnam J. Math. 39, 343–368.Google Scholar
LeVesque, C. and M., Waldschmidt (2012), Familles d’équations de Thue-Mahler n'ayant que des solutions triviales, Acta Arith. 155, 117–138.CrossRefGoogle Scholar
Levin, A. (2006), One-parameter families of unit equations, Math. Res. Lett. 13, 935–945.CrossRefGoogle Scholar
Levin, A. (2008), The dimension of integral points and holomorphic curves on the complements of hyperplanes, Acta Arith. 134, 259–270.CrossRefGoogle Scholar
Levin, A. (2014), Lower bounds in logarithms and integral points on higher dimensional varieties, Algebra Number Theory 8, 647–687.CrossRefGoogle Scholar
Lewis, D. J. and K., Mahler (1961), Representation of integers by binary forms, Acta Arith. 6, 333–363.CrossRefGoogle Scholar
Liardet, P. (1974), Sur une conjecture de Serge Lang, C.R. Acad. Sci. Paris 279, 435–437.Google Scholar
Liardet, P. (1975), Sur une conjecture de Serge Lang, Astérisque 24–25, Soc. Math. France.Google Scholar
Liu, J. (2015), On p-adic Decomposable Form Inequalities, Ph.D. thesis, Leiden.
Loher, T. and D., Masser (2004), Uniformly counting points of bounded height, Acta Arith. 111, 277–297.CrossRefGoogle Scholar
Louboutin, S. (2000), Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1, and relative class numbers, J. Number Theory 85, 263–282.CrossRefGoogle Scholar
Loxton, J. H. and A. J., van der Poorten (1983), Multiplicative dependence in number fields, Acta Arith. 42, 291–302.CrossRefGoogle Scholar
Luca, F. (2005), On the greatest common divisor of u - 1 and v - 1 with u and v near S-units, Monatsh. Math. 146, 239–256.CrossRefGoogle Scholar
Mahler, K. (1933a), Zur Approximation algebraischer Zahlen I: Über den gro¨ssten Primteiler binärer Formen, Math. Ann. 107, 691–730.CrossRefGoogle Scholar
Mahler, K. (1933b), Zur Approximation algebraischer Zahlen III: Über die mittlere Anzahl grosser Zahlen durch binäre Formen, Acta Math. 62, 91–166.CrossRefGoogle Scholar
Mahler, K. (1935a), Eine arithmetische Eigenschaft der Taylor-koeffizienten rationaler Functionen, Proc. Kon. Ned. Akad. Wetensch. 38, 50–60.Google Scholar
Mahler, K. (1935b), Über transzendente p-adische Zahlen, Compos. Math. 2, 259–275.Google Scholar
Mann, H. B. (1965), On linear relations between roots of unity, Mathematika 12, 107–117.CrossRefGoogle Scholar
Mason, R. C. (1983), The hyperelliptic equation over function fields, Math. Proc. Camb. Phil. Soc. 93, 219–230.CrossRefGoogle Scholar
Mason, R. C. (1984), Diophantine equations over function fields, Cambridge University Press.CrossRefGoogle Scholar
Mason, R. C. (1986a), Norm form equations I, J. Number Theory 22, 190–207.CrossRefGoogle Scholar
Mason, R. C. (1986b), Norm form equations III: positive characteristic, Math. Proc. Camb. Phil. Soc. 99, 409–423.CrossRefGoogle Scholar
Mason, R. C. (1987), Norm form equations V. Degenerate modules, J. Number Theory 25, 239–248.CrossRefGoogle Scholar
Mason, R. C. (1988), The study of Diophantine equations over function fields, in: New Advances in Transcendence Theory, Proc. conf. Durham 1986, A., Baker, ed., Cambridge University Press, pp. 229–247.
Masser, D.W. (1985), Conjecture in “Open Problems” section, in: Proc. Symposium on Analytic Number Theory, London, 25.Google Scholar
Masser, D. W. (2002), On abc and discriminants, Proc. Amer. Math. Soc. 130, 3141– 3150.CrossRefGoogle Scholar
Masser, D.W. (2004),Mixing and linear equations over groups in positive characteristic, Israel J. Math. 142, 189–204.CrossRefGoogle Scholar
Masser, D. W. and G., Wüstholz (1983), Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72, 407–464.CrossRefGoogle Scholar
Matveev, E. M. (2000), An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II. Izvestiya: Mathematics 64, 1217–1269.Google Scholar
McQuillan, M. (1995), Division points on semi-abelian varieties, Invent. Math. 120 (1995), 143–159.CrossRefGoogle Scholar
Mestre, J. F. (1981), Corps euclidiens, unités exceptionnelles et courbes elliptiques, J. Number Theory 13, 123–137.CrossRefGoogle Scholar
Minkowski, H. (1910), Geometrie der Zahlen, Teubner (Posthumously published; prepared by D. Hilbert and A. Speiser).
Moosa, R. and T., Scanlon (2002), The Mordell-Lang conjecture in positive characteristic revisited, In: Model theory and applications, Quaderni di matematica 11, L. Belair, Z., Chatzidakis, P., D'Aquino, D., Marker, M., Otero, F., Point and A., Wilkie, eds. Dipartimento di Matematica Seconda Universit`a di Napoli. pp. 273–296.Google Scholar
Moosa, R. and T., Scanlon (2004), F-structures and integral points on semiabelian varieties over finite fields, Amer. J. Math. 126, 473–522.Google Scholar
Mordell, L. J. (1922a), On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambridge Philos. Soc. 21, 179–192.Google Scholar
Mordell, L. J. (1922b), Note on the integer solutions of the equation Ey2 = Ax3 + Bx2 + Cx + D, Messenger Math. 51, 169–171.Google Scholar
Mordell, L. J. (1923), On the integer solutions of the equation ey2 = ax3 + bx2 + cx + d, Proc. London Math. Soc. (2) 21, 415–419.Google Scholar
Moree, P. and C. L., Stewart (1990), Some Ramanujan-Nagell equations with many solutions, Indag Math. (N. S.), 1, 465–472.CrossRefGoogle Scholar
Morton, P. and J. H., Silverman (1994), Rational periodic points of rational functions, Intern. Math. Res. Not. (2), 97–110.Google Scholar
Mueller, J. (2000), S-unit equations in function fields via the abc-theorem, Bull. London Math. Soc. 32, 163–170.CrossRefGoogle Scholar
Murty, M. R. and H., Pasten (2013), Modular forms and effective Diophantine approximation, J. Number Theory 133, 3739–3754.CrossRefGoogle Scholar
Nagell, T. (1930), Zur Theorie der kubischen Irrationalitäten, Acta Math. 55, 33–65.CrossRefGoogle Scholar
Nagell, T. (1964), Sur une propriété des unités d'un corps algébrique, Arkiv för Mat. 5, 343–356.CrossRefGoogle Scholar
Nagell, T. (1967), Sur les discriminants des nombres algébriques, Arkiv för Mat. 7, 265–282.CrossRefGoogle Scholar
Nagell, T. (1968a), Quelques propriétés des nombres algébriques du quatri`eme degré, Arkiv för Mat. 7, 517–525.Google Scholar
Nagell, T. (1968b), Sur les unités dans les corps biquadratiques primitifs du premier rang, Arkiv för Mat. 7, 359–394.CrossRefGoogle Scholar
Nagell, T. (1970), Sur un type particulier d'unités algébriques, Arkiv för Mat. 8, 163– 184.CrossRefGoogle Scholar
Narkiewicz, W. (1989), Polynomial cycles in algebraic number fields, Colloq. Math. 58, 149–153.CrossRefGoogle Scholar
Narkiewicz, W. (1995), Polynomial Mappings, Lecture Notes Math. 1600, Springer Verlag.Google Scholar
Narkiewicz, W. and T., Pezda (1997), Finite Polynomial Orbits in Finitely Generated Domains, Monatsh. Math. 124, 309–316.CrossRefGoogle Scholar
Neukirch, J. (1992), Algebraische Zahlentheorie, Springer Verlag.
Nishioka, K. (1986), Proof of Masser's Conjecture on the Algebraic Independence of Values of Liouville Series, Proc. Japan Acad. Ser. A 62, 219–222.Google Scholar
Nishioka, K. (1987), Conditions for algebraic independence of certain power series of algebraic numbers, Compos. Math. 62, 53–61.Google Scholar
Nishioka, K. (1989), Evertse theorem in algebraic independence, Arch. Math. 53, 159–170.CrossRefGoogle Scholar
Nishioka, K. (1994), Algebraic independence by Mahler'smethod and S-unit equations, Compos. Math. 92, 87–110.Google Scholar
Nishioka, K. (1996), Mahler Functions and Transcendence, Lecture Notes Math. 1631, Springer Verlag.
Northcott, D. G. (1950), Periodic points on an algebraic variety, Ann. Math. 51, 167–177.CrossRefGoogle Scholar
Parry, C. J. (1950), The p-adic generalization of the Thue-Siegel theorem, Acta Math. 83, 1–100.CrossRefGoogle Scholar
Pasten, H. (2014), Arithmetic problems around the abc-conjecture and connections with logic, Ph.D. thesis, Queen's University, Canada.
Pethő, A. and R., Schulenberg (1987), Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34, 189–196.Google Scholar
Petho, A. and B. M. M. de, Weger (1986), Products of prime powers in binary recurrence sequences I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47, 713–727.Google Scholar
Pezda, T. (1994), Polynomial cycles in certain local domains, Acta Arith. 66, 11–22.CrossRefGoogle Scholar
Pezda, T. (2014), An algorithm determining cycles of polynomial mappings in integral domains, Publ. Math. Debrecen 84, 399–414.CrossRefGoogle Scholar
Poe, M. (1997), On distribution of solutions of S-unit equations, J. Number Theory 62, 221–241.CrossRefGoogle Scholar
Pohst, M. E. (1993), Computational Algebraic Number Theory, Birkhäuser VerlagGoogle Scholar
Pohst, M. E. and H., Zassenhaus (1989), Algorithmic algebraic number theory, Cambridge University Press.CrossRefGoogle Scholar
Poonen, R. (1999), Mordell-Lang plus Bogomolov, Invent. Math. 137, 413–425.CrossRefGoogle Scholar
van der Poorten, A. J. and H. P., Schlickewei (1982), The growth condition for recurrence sequences, Macquarie University Math. Rep. 82–0041.Google Scholar
van der Poorten, A. J. and H. P., Schlickewei (1991), Additive relations in fields, J. Austral. Math. Soc. (Ser. A) 51, 154–170.CrossRefGoogle Scholar
Posner, E. C. and H. Rumsey, Jr. (1965), Polynomials that divide infinitely many trinomials, Michigan Math. J., 12, 339–348.Google Scholar
Rémond, G. (2000a), Inégalité de Vojta en dimension supérieure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29, 101–151.Google Scholar
Rémond, G. (2000b), Décompte dans une conjecture de Lang, Invent. Math. 142, 513–545.CrossRefGoogle Scholar
Rémond, G. (2002), Sur les sous-variétés des tores, Compos. Math. 134, 337–366.CrossRefGoogle Scholar
Rémond, G. (2003), Approximation diophantienne sur les variétés semi-abeliennes, Ann. Sci. Ecole Norm. Sup. (4) 36, 191–212.Google Scholar
Ridout, P. (1958), The p-adic generalization of the Thue-Siegel-Roth Theorem, Mathematika 5, 40–48.CrossRefGoogle Scholar
Robert, O., C. L., Stewart and G., Tenenbaum (2014), A refinement of the abc conjecture, Bull. London Math. Soc. 46, 1156–1166.Google Scholar
Roquette,, P. (1957), Einheiten und Divisorenklassen in endlich erzeugbaren Körpern, Jahresber. Deutsch. Math. Verein 60, 1–21.Google Scholar
Rosser, J. B. and L., Schoenfeld (1962), Approximate formulas for some functions of prime numbers, Illinois J. Math. 6, 64–94.Google Scholar
Roth, K. F. (1955), Rational approximations to algebraic numbers, Mathematika 2, 1–20.CrossRefGoogle Scholar
Ru, M. and P., Vojta (1997), Schmidt's subspace theorem with moving targets, Invent. Math. 127, 51–65.CrossRefGoogle Scholar
Ru, M. and P. M., Wong (1991), Integral points of Pn \ {2n + 1 hyperplanes in general position}, Invent. Math. 106, 195–216.CrossRefGoogle Scholar
Schinzel, A. (1988), Reducibility of lacunary polynomials VIII, Acta Arith. 50, 91–106.CrossRefGoogle Scholar
Schlickewei, H. P. (1976a), Linearformen mit algebraischen Koeffizienten, Manuscripta Math. 18, 147–185.CrossRefGoogle Scholar
Schlickewei, H. P. (1976b), Die p-adische Verallgemeinerung des Satzes von Thue- Siegel-Roth-Schmidt,J. Reine Angew. Math. 288, 86–105.Google Scholar
Schlickewei, H. P. (1976c), On products of special linear forms with algebraic coefficients,Acta Arith. 31, 389–398.CrossRefGoogle Scholar
Schlickewei, H. P. (1977a), Über die diophantische Gleichung x1 +· · ·+xn = 0, Acta Arith. 33 (1977), 183–185.Google Scholar
Schlickewei, H. P. (1977b), The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. (Basel) 29, 267–270.CrossRefGoogle Scholar
Schlickewei, H. P. (1977c), On norm form equations, J. Number Theory 9, 370–380.CrossRefGoogle Scholar
Schlickewei, H. P. (1977d), On linear forms with algebraic coefficients and Diophantine equations, J. Number Theory 9, 381–392.CrossRefGoogle Scholar
Schlickewei, H. P. (1977e), Inequalities for decomposable forms, Astérisque 41–42, pp. 267–271.Google Scholar
Schlickewei, H. P. (1990), S-unit equations over number fields, Invent. Math. 102, 95–107.CrossRefGoogle Scholar
Schlickewei, H. P. (1992), The quantitative Subspace Theorem for number fields, Compos. Math. 82, 245–273.Google Scholar
Schlickewei, H. P. (1996a), Multiplicities of recurrence sequences, Acta Math. 176, 171–243.CrossRefGoogle Scholar
Schlickewei, H. P. (1996b), Equations in roots of unity, Acta Arith. 76, 99–108.CrossRefGoogle Scholar
Schlickewei, H. P. and W. M., Schmidt (2000), The Number of Solutions of Polynomial- Exponential Equations, Compos. Math. 120, 193–225.CrossRefGoogle Scholar
Schlickewei, H. P. and C., Viola (1997), Polynomials that divide many trinomials, Acta Arith. 78, 267–273.CrossRefGoogle Scholar
Schlickewei, H. P. and C., Viola (1999), Polynomials that divide many k-nomials, in: Number Theory in Progress, Vol. I, Proc. conf. in honour of the 60th birthday of Andrzej Schinzel, K., Gyory, H., Iwaniec and J., Urbanowicz eds. de Gruyter, pp. 445–450.Google Scholar
Schlickewei, H. P. and E., Wirsing (1997), Lower bounds for the heights of solutions of linear equations, Invent. Math. 129, 1–10.CrossRefGoogle Scholar
Schmidt, W. M. (1971), Linearformen mit algebraischen Koeffizienten II, Math. Ann. 191, 1–20.CrossRefGoogle Scholar
Schmidt, W. M. (1972), Norm form equations, Ann. Math. 96, 526–551.CrossRefGoogle Scholar
Schmidt, W. M. (1973), Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications, Academic Press, pp. 235– 253.
Schmidt, W. M. (1975), Simultaneous approximation to algebraic numbers by elements of a number field, Monatsh. Math. 79, 55–66.CrossRefGoogle Scholar
Schmidt, W. M. (1978), Thue's equation over function fields, J. Austral. Math. Soc. Ser A 25, 385–422.CrossRefGoogle Scholar
Schmidt, W. M. (1980), Diophantine Approximation, Lecture Notes Math. 785, Springer Verlag.Google Scholar
Schmidt, W. M. (1989), The subspace theorem in diophantine approximation, Compos. Math. 96, 121–173.Google Scholar
Schmidt, W. M. (1990), The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317, 197–227.CrossRefGoogle Scholar
Schmidt, W. M. (1991), Diophantine Approximations and Diophantine Equations, Lecture Notes Math. 1467, Springer Verlag.Google Scholar
Schmidt, W. M. (1992), Integer points on curves of genus 1, Compositio Math. 81, 33–59.Google Scholar
Schmidt, W. M. (1996), Heights of points on subvarieties of Gnm, In: Number Theory 1993–94, London Math. Soc. Lecture Note Ser. 235, S., David, ed., 157–187. Cambridge University Press.Google Scholar
Schmidt, W. M. (1999), The zero multiplicity of linear recurrence sequences, Acta Math. 182, 243–282.CrossRefGoogle Scholar
Schmidt, W. M. (2000), Zeros of linear recurrence sequences, Publ. Math. Debrecen 56, 609–630.Google Scholar
Schmidt, W. M. (2003), Linear recurrence sequences, in: Diophantine Approximation, C.I.M.E. Summer school, Cetraro, Italy, June 28–July 6, 2000, F., Amoroso, U., Zannier, eds., Lecture Notes Math. 1819, Springer Verlag, pp. 171–247.Google Scholar
Schmidt, W. M. (2009), The Diophantine equation ax11· · · axnn = f (x1, . . ., xn), in: Analytic Number Theory. Essays in Honour of Klaus Roth,W.W. L., Chen,W. T., Gowers, H., Halberstem and W. M., Schmidt, eds., pp. 414–420. Cambridge University Press.Google Scholar
Schneider, T. (1934), Transzendenzuntersuchungen periodischer Funktionen: I Transzendenz von Potenzen; II Transzendenzeigenschaften elliptischer Funktionen, J. Reine Angew. Math. 172, 65–74.Google Scholar
Sehgal, S. (1978), Topics in Group Rings, Marcel Dekker.
Seidenberg, A. (1974), Constructions in algebra, Trans. Amer. Math. Soc. 197, 273– 313.CrossRefGoogle Scholar
Serre, J.-P. (1989), Lectures on the Mordell-Weil theorem, Aspects of Math. E15, Vieweg.Google Scholar
Shorey, T. N. and R., Tijdeman (1986), Exponential Diophantine Equations, Cambridge University Press.CrossRefGoogle Scholar
Siegel, C. L. (1921), Approximation algebraischer Zahlen, Math. Z. 10, 173–213.CrossRefGoogle Scholar
Siegel, C. L. (1926), The integer solutions of the equation y2 = axn|+ bxn-1 +· · ·+k, J. London Math. Soc. 1, 66–68.Google Scholar
Siegel, C. L. (1929), Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys. Math. Kl., No. 1.Google Scholar
Siegel, C. L. (1969), Abschätzung von Einheiten, Nachr. Göttingen, 71–86.Google Scholar
Silverman, J. H. (1984), The S-unit equation over function fields, Math. Proc. Camb. Phil. Soc. 95, 3–4.CrossRefGoogle Scholar
Silverman, J. H. (1995), Exceptional units and numbers of small Mahler measure, Experiment. Math. 4, 70–83.CrossRefGoogle Scholar
Silverman, J. H. (2007), The arithmetic of dynamical systems, Springer Verlag.CrossRefGoogle Scholar
Simmons, H. (1970), The solution of a decision problem for several classes of rings, Pacific J. Math. 34, 547–557.CrossRefGoogle Scholar
Simon, D. (2001), The index of nonmonic polynomials, Indag. Math. (N.S) 12, 505–517.Google Scholar
Skolem, Th. (1933), Einige Sätzeüber gewisse Reihenentwicklungen und exponentiale Beziehungen mit Anwendung auf diophantische Gleichungen, Oslo Vid. akad. Skrifter 6, 1–61.Google Scholar
Skolem, Th. (1935), EinVerfahren zur Behandlung gewisser exponentialer Gleichungen, 8. Skand. Mat.-Kongr. Stockholm163–188.Google Scholar
Smart, N. (1995), The solution of triangularly connected decomposable form equations, Math. Comp. 64, 819–840.CrossRefGoogle Scholar
Smart, N. P. (1997), S-unit equations, binary forms and curves of genus 2, Proc. London Math. Soc. (3) 75, 271–307.Google Scholar
Smart, N. P. (1998), The Algorithmic Resolution of Diophantine Equations, Cambridge University Press.CrossRefGoogle Scholar
Smart, N. P. (1999), Determining the small solutions to S-unit equations, Math. Comput. 68, 1687–1699.CrossRefGoogle Scholar
Sprindžuk, V. G. (1969), Effective estimates in “ternary” exponential diophantine equations (Russian), Dokl. Akad. Nauk BSSR, 13, 777–780.Google Scholar
Sprindžuk, V. G. (1973), Squarefree divisors of polynomials and class numbers of algebraic number fields (Russian), Acta Arith. 24, 143–149.Google Scholar
Sprindžuk, V. G. (1974), Representation of numbers by the norm forms with two dominating variables, J. Number Theory, 6, 481–486.CrossRefGoogle Scholar
Sprindžuk, V. G. (1976), A hyperelliptic diophantine equation and class numbers (Russian), Acta Arith. 30, 95–108.Google Scholar
Sprindžuk, V. G. (1982), Classical Diophantine Equations in Two Unknowns (Russian), Nauka.Google Scholar
Sprindžuk, V. G. (1993), Classical Diophantine Equations, Lecture Notes Math. 1559, Springer Verlag.Google Scholar
Stewart, C. L. and R., Tijdeman (1986), On the Oesterlé-Masser conjecture, Monatsh. Math. 102, 251–257.CrossRefGoogle Scholar
Stewart, C. L. and K., Yu (1991), On the abc conjecture, Math. Ann. 291, 225–230.CrossRefGoogle Scholar
Stewart, C. L. and K., Yu (2001), On the abc conjecture, II, Duke Math. J. 108, 169– 181.CrossRefGoogle Scholar
Stothers, W. W. (1981), Polynomial identities and Hauptmodulen, Quart. J. Math. Oxford Ser. (2) 32, 349–370.CrossRefGoogle Scholar
Stroeker, R. J. and N., Tzanakis (1994), Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67, 177–196.CrossRefGoogle Scholar
Sunley, J. S. (1973), Class numbers of totally imaginary quadratic extensions of totally real fields, Trans. Amer. Math. Soc. 175, 209–232.CrossRefGoogle Scholar
Surroca, A. (2007), Sur léffectivité du théor`e me de Siegel et la conjecture abc, J. Number Theory, 124, 267-290.CrossRefGoogle Scholar
Szemerédi, E. (1975), On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27, 299–345.CrossRefGoogle Scholar
Taylor, R. and A., Wiles (1995), Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2) 141, 553–572.Google Scholar
Teske, E. (1998), A space efficient algorithm for group structure computation, Math. Comp. 67, 1637–1663.CrossRefGoogle Scholar
Thue, A. (1909), Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135, 284–305.Google Scholar
Thunder, J. L. (2001), Decomposable Form Inequalities, Ann. Math. 153, 767–804.CrossRefGoogle Scholar
Thunder, J. L. (2005), Asymptotic estimates for the number of integer solutions to decomposable form inequalities, Compos. Math. 141 (2005), 271–292.CrossRefGoogle Scholar
Tichy, R. Fand V., Ziegler (2007), Units generating the ring of integers of complex cubic fields, Colloq. Math. 109, 71–83.CrossRefGoogle Scholar
Tzanakis, N. (2013), Elliptic Diophantine Equations, de Gruyter.
Tzanakis, N. and B. M. M., de Weger (1989), On the practical solution of the Thue equation, J. Number Theory 31, 99–132.CrossRefGoogle Scholar
Vaaler, J. (2014), Heights on groups and small multiplicative dependencies, Trans. Amer. Math. Soc. 366, 3295–3323.Google Scholar
Vojta, P. (1983), Integral points on varieties, Ph.D.-thesis, Harvard University.
Vojta, P. (1987), Diophantine Approximation and Value Distribution Theory, Lecture Notes in Math. 1239. Springer Verlag.CrossRefGoogle Scholar
Vojta, P. (1996), Integral points on subvarieties of semiabelian varieties, I, Invent Math. 126, 133–181.CrossRefGoogle Scholar
Vojta, P. (2000), On the ABC-conjecture and diophantine approxination by rational points, Amer. J. Math. 122, 843–872. Correction, Amer. J. Math. 123 (2001), 383–384.CrossRefGoogle Scholar
Voloch, J. F. (1985), Diagonal equations over function fields, Bol. Soc. Bras. Mat. 16, 29–39.CrossRefGoogle Scholar
Voloch, J. F. (1998), The equation ax + by = 1 in characteristic p, J. Number Th. 73, 195–200.CrossRefGoogle Scholar
Voutier, P. (1996), An effective lower bound for the height of algebraic numbers, Acta Arith. 74, 81–95.CrossRefGoogle Scholar
Voutier, P. (2014), Modules with many non-associates and norm form equations with many families of solutions, J. Number Theory 138, 20–36.CrossRefGoogle Scholar
van der Waerden, B. L. (1927), Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. (2) 15, 212–216.Google Scholar
Waldschmidt, M. (1973), Propriétés arithmétiques des valeurs de fonctions méromorphes algébriquement indépendantes, Acta Arith. 23, 19–88.CrossRefGoogle Scholar
Waldschmidt, M. (1974), Nombres Transcendants, Springer Verlag.
Waldschmidt, M. (2000), Diophantine approximation on linear algebraic groups, Springer Verlag.CrossRefGoogle Scholar
Wang, J. T.-Y. (1996), The truncated second main theorem of function fields, J. Number Theory 58, 139–157.CrossRefGoogle Scholar
Wang, J. T.-Y. (1999), A note onWronskians and the ABC theorem, Manuscripta Math. 98, 255–264.CrossRefGoogle Scholar
de Weger, B. (1987), Algorithms for Diophantine Equations, Dissertation, Centrum voor Wiskunde en Informatica, Amsterdam.Google Scholar
deWeger, B. (1989), Algorithms for Diophantine Equations, CWI Tract 65, Amsterdam.Google Scholar
Wildanger, K. (1997), Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern mit einer Anwerdung auf die Bestimmung aller ganzen Punkte einer Mordellschen Kurve, Dissertation, Technical University, Berlin.
Wildanger, K.(2000), Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, J. Number Theory 82, 188–224.CrossRefGoogle Scholar
Wiles, A. (1995), Modular elliptic curves and Fermat's Last Theorem, Ann. Math. (2) 141, 443–551.CrossRefGoogle Scholar
Wirsing, E. (1971), On approximation of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., Providence, pp. 213–247.Google Scholar
Wüstholz, G., ed. (2002), A panorama of number theory or the view from Baker's garden, Cambridge University Press.CrossRefGoogle Scholar
Yu, K. (2007), P-adic logarithmic forms and group varieties III, Forum Mathematicum, 19, 187–280.CrossRefGoogle Scholar
Zannier, U. (1993), Some remarks on the S-unit equation in function fields, Acta Arith. 64, 87–98.CrossRefGoogle Scholar
Zannier, U. (2003), Some applications of diophantine approximation to diophantine equations (with special emphasis on the Schmidt subspace theorem), Forum.Google Scholar
Zannier, U. (2004), On the integer solutions of exponential equations in function fields, Ann. Inst. Fourier (Grenoble) 54, 849–874.Google Scholar
Zannier, U. (2009), Lecture notes on Diophantine analysis, Edizioni della Normale.
Zannier, U. (2012), Some Problems of Unlikely Intersections in Arithmetic and Geometry, Princeton University Press.
Zhang, S. (2000), Distribution of almost division points, Duke Math. J. 103, 39–46.CrossRefGoogle Scholar
Zieve, M. E. (1996), Cycles of polynomial mappings, Ph.D. thesis, University of California, Berkeley.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jan-Hendrik Evertse, Universiteit Leiden, Kálmán Győry, Debreceni Egyetem, Hungary
  • Book: Unit Equations in Diophantine Number Theory
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316160749.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jan-Hendrik Evertse, Universiteit Leiden, Kálmán Győry, Debreceni Egyetem, Hungary
  • Book: Unit Equations in Diophantine Number Theory
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316160749.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jan-Hendrik Evertse, Universiteit Leiden, Kálmán Győry, Debreceni Egyetem, Hungary
  • Book: Unit Equations in Diophantine Number Theory
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316160749.013
Available formats
×