Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T14:35:23.919Z Has data issue: false hasContentIssue false

1 - Universality and Bose-Einstein Condensation: Perspectives on Recent Work

from Part I - Introduction

Published online by Cambridge University Press:  18 May 2017

D. W. Snoke
Affiliation:
University of Pittsburgh, USA
N. P. Proukakis
Affiliation:
Joint Quantum Centre Durham-Newcastle, Newcastle University, UK
T. Giamarchi
Affiliation:
University of Geneva
P. B. Littlewood
Affiliation:
University of Chicago, USA
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

The study of Bose-Einstein condensation has undergone a remarkable expansion during the last twenty years. Observations of this phenomenon have been reported in a number of diverse atomic, optical, and condensed matter systems, facilitated by remarkable experimental advances. The synergy of experimental and theoretical work in this broad research area is unique, leading to the establishment of Bose-Einstein condensation as a universal interdisciplinary area of modern physics. This chapter reviews the broad expansion of Bose-Einstein condensation physics in the past two decades.

Introduction

The field of Bose-Einstein condensation (BEC) has undergone an explosive expansion during the past twenty years. Newcomers to this field are now often introduced to this as a universal phenomenon, which nonetheless exhibits diverse (and sometimes strikingly different) manifestations. Despite such differences, the common underlying theme creates a unique identity across many different energy and length scales.

The study of BEC as a universal phenomenon was highlighted in a focused conference in 1993, leading to the publication of the well-known “green book” [1], which surveyed the breadth of the field of condensate physics at that time. The success of the conference led to a second meeting in 1995, at which Eric Cornell and Carl Wieman announced the achievement of Bose-Einstein condensation of ultracold 87Rb atoms in a harmonic trap. That work began an explosion of new research in the field of cold atoms, which has continued to this day, and this very success inevitably led many of those studying cold atoms to pay less attention to other types of condensates. Wolfgang Ketterle gives a historical overview of this exciting period of time in Chapter 3. Recently, various scientific meetings have worked to re-establish the physical connections across different BEC systems, and in 2013 a workshop was held with the focused goal of improving communications across disciplines. This present book is an outgrowth of that meeting.

The Situation Before the Revolution

Because of the great success of the cold atom BEC and other BEC systems in the past twenty years, it may be hard for young scientists to understand the climate of BEC research in the early 1990s. At that time, there was only one known example of BEC, namely liquid helium-4, and there was a small but vocal minority of scientists who questioned whether BEC was established even in that system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Griffin, A., Snoke, D. W., and Stringari, S. (eds). 1995. Bose-Einstein Condensation. Cambridge University Press.
[2] Blatt, J. M. 1964. Theory of Superconductivity: Pure and Applied Physics. Academic Press.
[3] Leggett, A. J. 1980. Diatomic molecules and Cooper pairs. In: Pekalski, A., and Przystawa, J. A. (eds), Modern Trends in the Theory of Condensed Matter, Proceedings of the XVI Karpacz Winter School. Springer.
[4] Leggett, A. J. 2006. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems. Oxford Graduate Texts in Mathematics. Oxford University Press.
[5] Comte, C., and Nozieres, P. 1982. Exciton Bose condensation – the ground-state of an electron-hole gas. J. Physique, 43, 1069.Google Scholar
[6] Comte, C., and Nozieres, P. 1982. Spin states, screening and band-structure effects. J.Physique, 43, 1083.Google Scholar
[7] Keldysh, L. V. 1995. Macroscopic coherent states of excitons in semiconductors. Page 558 of: Griffin, A., Snoke, D.W., and Stringari, S. (eds.), Bose-Einstein Condensation. Cambridge University Press.
[8] Nozières, P., and Schmitt-Rink, S. 1985. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J Low Temp Phys. 59, 195.Google Scholar
[9] Platzmann, P. M., and Mills, A. P. 1995. Possibilities for BEC of positronium. Page 558 of: Griffin, A., Snoke, D.W., and Stringari, S. (eds.), Bose-Einstein Condensation. Cambridge University Press.
[10] Fried, D. G., Killian, T. C., Willmann, L., Landhuis, D., Moss, S. C., Kleppner, D., and Greytak, T. J. 1998. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett., 81, 3811.Google Scholar
[11] Snoke, D.W. 1996. Bose-Einstein condensation of excitons: II. Results from Cu2O at high density. Comments on Condensed Matter Physics, 17, 325.Google Scholar
[12] O'Hara, K. E., and Wolfe, J. P. 2000. Relaxation kinetics of excitons in cuprous oxide. Phys. Rev. B, 62, 12909.Google Scholar
[13] Snoke, D. W., and Kavoulakis, G. M. 2014. Bose–Einstein condensation of excitons in Cu2O: progress over 30 years. Reports on Progress in Physics, 77, 116501.Google Scholar
[14] Nelson, K., private communication.
[15] Bobrysheva, A. I., and Moskalenko, S. A. 1983. Biexcitons in crystals with large ortho-para-exciton splitting. Phys. Status Solidi B, 119, 141.Google Scholar
[16] Bobrysheva, A. I., Moskalenko, S. A., and Russu, S. S. 1991. The biexciton influence on Bose-Einstein condensation of orthoexcitons in Cu2O. Phys. Status Solidi B, 167, 625.Google Scholar
[17] Wolfe, J. P., and Jang, J. I. 2014. The search for Bose-Einstein condensation of excitons in Cu2O: exciton Auger recombination versus biexciton formation. New J. Phys., 16, 123048.Google Scholar
[18] Snoke, D.W. 2013. Dipole excitons in coupled quantum wells: toward an equilibrium exciton condensate. Pages 419–432 of: Proukakis, N. P., Gardiner, S. A., Davis, M. J., and Szymanska, M. H. (eds), Quantum Gases: Finite Temperature and Non- Equilibrium Dynamics. Imperial College Press (London).
[19] High, A., Leonard, J., Remeika, M., Butov, L., and Hanson, M. 2012. Condensation of excitons in a trap. Nano Lett., 12, 2605.Google Scholar
[20] Alloing, M., Beian, M., Lewenstein, M., Fuster, D., Gonzalez, Y., Gonzalez, L., Combescot, R., Combescot, M., and Dubin, F. 2014. Evidence for a Bose-Einstein condensate of excitons. Europhysics Lett., 107, 10012.Google Scholar
[21] Semkat, D., Sobkowiak, S., Manzke, G., and Stolz, H. 2012. Comment on “Condensation of Excitons in a Trap.” Nano Lett., 12, 5055.Google Scholar
[22] Repp, J., Schinner, G. J., Schubert, E., Rai, A. K., Reuter, D., Wieck, A. D., Wurstbauer, U., Kotthaus, J. P., and Holleitner, A.W. 2014. Confocal shift interferometry of coherent emission from trapped dipolar excitons. Applied Physics Lett., 105, 241101.Google Scholar
[23] High, A., Leonard, J., Remeika, M., Butov, L., and Hanson, M. 2012. Reply to “Comment on Condensation of Excitons in a Trap.” Nano Lett., 12, 5422.Google Scholar
[24] Yoshioka, K., Morita, Y., Fukuoka, K., and Kuwata-Gonokami, M. 2013. Generation of ultracold paraexcitons in cuprous oxide: a path toward a stable Bose-Einstein condensate. Phys. Rev. B, 88, 041201.Google Scholar
[25] Sandfort, C., Brandt, J., Finke, C., Fröhlich, D, and Bayer, M. 2011. Paraexcitons of Cu2O confined by a strain trap and high magnetic fields. Phys. Rev. B, 84, 165215.Google Scholar
[26] Sobkowiak, S., Semkat, D., and Stolz, H. 2014. Modeling of the thermalization of trapped paraexcitons in Cu2O at ultralow temperatures. Phys. Rev. B, 82, 064505.Google Scholar
[27] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269, 198.Google Scholar
[28] Bradley, C. C., Sackett, C. A., Tollett, J. J., and Hulet, R. G. 1995. Evidence of Bose– Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687.Google Scholar
[29] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.Google Scholar
[30] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78, 985.Google Scholar
[31] Dalfovo, Franco, Giorgini, Stefano, Pitaevskii, Lev P., and Stringari, Sandro. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463.Google Scholar
[32] Inouye, S., Andrews, M. R., Stenger, J.J., Miesner, H., Stamper-Kurn, D. M., and Ketterle, W. 1998. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature, 392, 151.Google Scholar
[33] Görlitz, A., Vogels, J. M., Leanhardt, A. E., Raman, C., Gustavson, T. L., Abo-Shaeer, J. R., Chikkatur, A. P., Gupta, S., Inouye, S., Rosenband, T., and Ketterle, W. 2001. Realization of Bose–Einstein condensates in lower dimensions. Phys. Rev. Lett., 87, 130402.Google Scholar
[34] DeMarco, B., and Jin, D. S. 1999. Onset of Fermi degeneracy in a trapped atomic gas. Science, 285, 1703.Google Scholar
[35] Eisenstein, J. P. 2014. Exciton condensation in bilayer quantum hall systems. Pages 159–181 of: Langer, J. S. (ed), Annual Review of Condensed Matter Physics, vol. 5. Palo Alto: Annual Reviews.Google Scholar
[36] Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. 2011. Exciton transport and Andreev reflection in a bilayer quantum hall system. Phys. Rev. Lett., 106, 236807.Google Scholar
[37] Sun, Y., Yoon, Y., Steger, M., Liu, G., Pfeiffer, L. N., West, K., Snoke, D. W., and Nelson, K. A. 2015. Direct Measurement of Polariton-Polariton Interaction Strength, Nature Physics, in press (arXiv:1508.06698).
[38] Deng, H., Weihs, G., Santori, C., Bloch, J., and Yamamoto, Y. 2002. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199.Google Scholar
[39] Deng, H., Press, D., Götzinger, S., Solomon, G. S., Hey, R., Ploog, K. H., and Yamamoto, Y. 2006. Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett., 97, 146402.Google Scholar
[40] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M, Szymanska, M. H., Andre, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, L. S. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409.Google Scholar
[41] Balili, R., Hartwell, V., Snoke, D. W., Pfeiffer, L., and West, K. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316, 1007.Google Scholar
[42] Steger, M., Gautham, C., Snoke, D. W., Pfeiffer, L., and West, K. 2015. Slow reflection and two-photon generation of microcavity exciton-polaritons. Optica, 2, 1.Google Scholar
[43] Sun, Y., Wen, P., Yoon, Y., Liu, G., Steger, M., Pfeiffer, L. N., West, K., Snoke, D.W., and Nelson, K. A. 2017. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).Google Scholar
[44] Carusotto, I., and Ciuti, C. 2013. Quantum fluids of light. Rev. Mod. Phys., 85, 299–366.Google Scholar
[45] Keeling, J. 2011. Superfluid density of an open dissipative condensate. Phys. Rev. Lett., 107, 080402.Google Scholar
[46] Snoke, D. W. 2012. Polariton condensation and lasing. Pages 307–328 of: Sanvitto, D., and Timofeev, V. (eds), Exciton Polaritons in Microcavities. Springer Series in Solid State Sciences, vol. 172. Springer.
[47] Nelsen, B., Balili, R., Snoke, D. W., Pfeiffer, L., and West, K. 2009. Polariton condensation: two distinct transitions in GaAs microcavities with stress traps. Journal of Applied Physics, 105, 122414.Google Scholar
[48] Yamaguchi, M., Kamide, K., Nii, R., Ogawa, T., and Yamamoto, Y. 2013. Second thresholds in BEC-BCS-laser crossover of exciton-polariton systems. Phys. Rev. Lett., 111, 026404.Google Scholar
[49] Klaers, J., Schmitt, J. Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545.Google Scholar
[50] Gordon, A., and Fischer, B. 2002. Phase transition theory of many-mode ordering and pulse formation in lasers. Phys. Rev. Lett., 89, 103901.Google Scholar
[51] Weill, R., Levit, B., Bekker, A., Gat, O., and Fischer, B. 2010. Laser light condensate: experimental demonstration of light-mode condensation in actively mode locked laser. Optics Express, 18, 16520.Google Scholar
[52] Baumberg, J. J., Kavokin, A. V., Christopoulos, S., Grundy, A. J. D., Butté, R., Christmann, G, Solnyshkov, D. D, Malpuech, G., Baldassarri Höger von Högersthal, G., Feltin, E., Carlin, J.-F., and Grandjean, N. 2008. Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett., 101, 136409.Google Scholar
[53] Kéna-Cohen, S., and Forrest, S. R. 2010. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 4, 371.Google Scholar
[54] Plumhof, J. D., Stoferle, T., Mai, L. J., Scherf, U., and Mahrt, R. F. 2014. Roomtemperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nature Materials, 13, 248.Google Scholar
[55] Bhattacharya, P., Frost, T., Deshpande, S., Baten, M. Z., Hazari, A., and Das, A. 2014. Room temperature electrically injected polariton laser. Phys. Rev. Lett., 112, 236802.Google Scholar
[56] Pethick, C. J., and Smith, H. 2002. Bose–Einstein Condensation in Dilute Gases. Cambridge University Press.
[57] Pitaevskii, L. P., and Stringari, S. 2003. Bose–Einstein Condensation. Clarendon Press.
[58] Sun, C., Jia, S., Barsi, C., Rica, S., Picozzi, A., and Fleischer, J.W. 2012. Observation of the kinetic condensation of classical waves. Nature Phys., 8, 470.Google Scholar
[59] Reichel, J., and Vuletic, V. (eds). 2011. Atom Chips. Wiley-VCH.
[60] Ryu, C., Andersen, M. F., Cladé, P., Natarajan, Vasant, Helmerson, K., and Phillips, W. D. 2007. Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap. Phys. Rev. Lett., 99, 260401.Google Scholar
[61] Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., and Hadzibabic, Z. 2013. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett., 110, 200406.Google Scholar
[62] Stamper-Kurn, D. M., and Ueda, M. 2013. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys., 85, 1191–1244.Google Scholar
[63] Kevrekidis, P. G., Frantzeskakis, D. J., and Carretero-Gonzalez, R. (eds). 2008. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment. Springer.
[64] Ray, M. W., Ruokoski, E., Kandel, S., M., Mottonen, and Hall, D. S. 2014. Observation of Dirac monopoles in a synthetic magnetic field. Nature, 505, 657.Google Scholar
[65] Albiez, Michael, Gati, Rudolf, Fölling, Jonas, Hunsmann, Stefan, Cristiani, Matteo, and Oberthaler, Markus K. 2005. Direct observation of tunneling and nonlinear selftrapping in a single bosonic Josephson junction. Phys. Rev. Lett., 95, 010402.Google Scholar
[66] Levy, S., Lahoud, E., Shomroni, I., and Steinhauer, J. 2007. The a.c. and d.c. Josephson effects in a Bose-Einstein condensate. Nature, 449, 579.Google Scholar
[67] Lewenstein, M., Sanpera, A., and Ahufinger, V. 2012. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems. Oxford University Press: Oxford.
[68] Greiner, M., Mandel, O., Esslinger, T., Hänsch, Th. W., and Bloch, I. 2002. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415, 39.Google Scholar
[69] Kinoshita, T., Wenger, T., and Weiss, D. S. 2006. A quantum Newton's cradle. Nature, 440, 900.Google Scholar
[70] Chin, C., Grimm, R., Julienne, P., and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225–1286.Google Scholar
[71] Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., and Pfau, T. 2009. The physics of dipolar bosonic quantum gases. Reports on Progress in Physics, 72, 126401.Google Scholar
[72] Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B., Lugan, P., Clement, D., Sanchez-Palencia, L., Bouyer, P., and Aspect, A. 2008. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature, 453, 891.Google Scholar
[73] Roati, G., D'Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., and Inguscio, M. 2008. Anderson localization of a non-interacting Bose-Einstein condensate. Nature, 453, 895.Google Scholar
[74] Steinhauer, J. 2014. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nature Physics, 10, 864.Google Scholar
[75] Brown, G. E. 1995. Kaon condensation in dense matter. Page 438 of: Griffin, A., Snoke, D. W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge University Press.
[76] Stoof, H. 1995. Condensate formation in a Bose gas. Page 226 of: Griffin, A., Snoke, D. W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge University Press.
[77] Kagan, Yu. 1995. Kinetics of Bose-Einstein condensation formation in an interacting Bose gas. Page 202 of: Griffin, A., Snoke, D.W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge University Press.
[78] Berloff, N. G., and Svistunov, B. V. 2002. Scenario of strongly nonequilibrated Bose-Einstein condensation. Phys. Rev. A, 66, 013603.Google Scholar
[79] Kibble, T. W. B. 1976. Topology of cosmic domains and strings. J. Phys. A, 9, 1387.Google Scholar
[80] Zurek, W. H. 1985. Cosmological experiments in superfluid helium. Nature, 317, 505.Google Scholar
[81] Proukakis, N. P., and Jackson, B. 2008. Finite temperature models of Bose–Einstein condensation. J. Phys. B: At. Mol. Opt., 41, 203002.Google Scholar
[82] Proukakis, N. P., Gardiner, S. A., Davis, M. J., and Szymańska, M. H. 2013. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. Cold Atoms. World Scientific Publishing Company.
[83] Snoke, D. W., and Girvin, S. M. 2013. Dynamics of phase coherence onset in Bose condensates of photons by incoherent phonon emission. Journal of Low Temperature Physics, 171, 1.Google Scholar
[84] Fisher, M. P. A., Weichman, P. B., Grinstein, G., and Fisher, D. S. 1989. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40, 546–570.Google Scholar
[85] Giamarchi, T., and Schulz, H. J. 1988. Anderson localization and interactions in onedimensional metals. Phys. Rev. B, 37, 325–340.Google Scholar
[86] Scalettar, R. T., Batrouni, G. G., and Zimanyi, G. T. 1991. Localization in interacting, disordered, Bose systems. Physical Review Letters, 66, 3144–3147.Google Scholar
[87] D'Errico, C., Lucioni, E., Tanzi, L., Gori, L., Roux, G., McCulloch, I. P., Giamarchi, T., Inguscio, M., and Modugno, G. 2014. Observation of a disordered Bosonic insulator from weak to strong interactions. Phys. Rev. Lett., 113, 095301.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×