References
Alberts, BGT, Selen, LPJ, Verhagen, WIM, Medendorp, WP (2015) Sensory substitution in bilateral vestibular a-reflexic patients. Physiol Rep 3:1–10. https://doi.org/10.14814/phy2.12385. Allison, RS, Harris, LR, Jenkin, MR, et al. (2001) Tolerance of temporal delay in virtual environments. IEEE IntConference Virtual Real 3:247–254.
Allison, RS, Howard, IP, Zacher, JE (1999) Effect of field size, head motion, and rotational velocity on roll vection and illusory self-tilt in a tumbling room. Perception 28:299–306.
Allum, JHJ, Honegger, F, Acuna, H (1995) Differential control of leg and trunk muscle-activity by vestibulospinal and proprioceptive signals during human balance corrections. Acta Otolaryngol (Stockh) 115:124–129.
Anastasopoulos, D, Bronstein, A, Haslwanter, T, et al. (1999) The role of somatosensory input for the perception of verticality. Ann N Y Acad Sci 871:379–383.
Anastasopoulos, D, Haslwanter, T, Bronstein, A, et al. (1997) Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153.
Angelaki, DE, Dickman, JD (2003) Gravity or translation: Central processing of vestibular signals to detect motion or tilt. J Vestib Res Equilib Orientat 13:245–253.
Angelaki, DE, Wei, M, Merfeld, DM (2001) Vestibular discrimination of gravity and translational acceleration. Ann N Y Acad Sci 942:114–27.
Angelaki, DE, Yakusheva, TA (2009) How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus. Ann N Acad Sci 1164:19–28.
Aubert, H (1861) Eine scheinbare Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Arch 20:381–393.
Barra, J, Marquer, A, Joassin, R, et al. (2010) Humans use internal models to construct and update a sense of verticality. Brain 133:3552–3563. https://doi.org/10.1093/brain/awq311. Bauermeister, M, Werner, H, Wapner, S (1964) The effect of body tilt on tactual-kinesthetic perception of verticality. Am J Psychol 77:451–456.
Berthoz, A, Pavard, B, Young, LR (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual–vestibular interactions. Exp Brain Res 23:471–489.
Bertolini, G, Ramat, S, Laurens, J, et al. (2011) Velocity storage contribution to vestibular self-motion perception in healthy human subjects. J Neurophysiol 105:209–223.
Betts, GA, Curthoys, IS (1998) Visually perceived vertical and visually perceived horizontal are not orthogonal. Vision Res 38:1989–1999. https://doi.org/10.1016/S0042-6989(97)00401-X. Beusmans, JMH (1998) Optic flow and the metric of the visual ground plane. Vis Res 38:1153–1170.
Bisdorff, AR, Wolsley, CJ, Anastasopoulos, D, et al. (1996) The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119:1523–1534. https://doi.org/10.1093/brain/119.5.1523. Blouin, J, Labrousse, L, Simoneau, M, et al. (1998) Updating visual space during passive and voluntary head-in-space movements. Exp Brain Res 122:93–100.
Böhmer, A, Rickenmann, J (1995) The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular diseases. J Vestib Res 5:35–44.
Bortolami, SB, Pierobon, A, DiZio, P, Lackner, JR (2006a) Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt. Exp Brain Res 173:364–373.
Bourrelly, A, McIntyre, J, Luyat, M (2015) Perception of affordances during long-term exposure to weightlessness in the International Space station. Cogn Process 16, Suppl 1: S171–S174. https://doi.org/10.1007/s10339-015-0692-y. Brandt, T, Dichgans, JM, Koenig, E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491.
Bremmer, F, Klam, F, Duhamel, JR, et al. (2002) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586.
Bremova, T, Caushaj, A, Ertl, M, et al. (2016) Comparison of linear motion perception thresholds in vestibular migraine and Menière’s disease. Eur Arch Otorhinolaryngol 273:2931–2939. https://doi.org/10.1007/s00405-015-3835-y. Bringoux, L, Tamura, K, Faldon, M, et al. (2004) Influence of whole-body pitch tilt and kinesthetic cues on the perceived gravity-referenced eye level. Exp Brain Res 155:385–392.
Brown, JL (1961) Orientation to the vertical during water immersion. Aerosp Med 32:209–217.
Buck, LE, Young, MK, Bodenheimer, B (2018) A comparison of distance estimation in HMD-based virtual environments with different HMD-based conditions. ACM Trans Appl Percept 15: Article 21, 1–15. https://doi.org/10.1145/3196885. Buckey, JC, Homick, JL (2003) Neurolab Spacelab Mission: Neuroscience Research in Space, Results from the STS-90, Neurolab Spacelab Mission. Lyndon B. Johnson Space Center, Houston.
Burles, F, Willson, M, Townes, P, et al. (2024) Preliminary evidence of high prevalence of cerebral microbleeds in astronauts with spaceflight experience. Front Physiol 15:1–13. https://doi.org/10.3389/fphys.2024.1360353. Carpenter-Smith, TR, Futamura, RG, Parker, DE (1995) Inertial acceleration as a measure of linear vection: An alternative to magnitude estimation. Percept Psychophys 57:35–42.
Carriot, J, Bringoux, L, Charles, C, et al. (2004) Perceived body orientation in microgravity: Effects of prior experience and pressure under the feet. Aviat Space Env Med 75:795–799.
Carriot, J, Brooks, JX, Cullen, KE (2013) Multimodal integration of self-motion cues in the vestibular system: Active versus passive translations. J Neurosci Off J Soc Neurosci 33:19555–19566. https://doi.org/10.1523/JNEUROSCI.3051-13.2013. Carriot, J, Mackrous, I, Cullen, KE (2021) Challenges to the vestibular system in space: How the brain responds and adapts to microgravity. Front Neural Circuits 15:1–12. https://doi.org/10.3389/fncir.2021.760313. Chang, C-H, Stoffregen, TA, Lei, MK, et al. (2024) Effects of decades of physical driving experience on pre-exposure postural precursors of motion sickness among virtual passengers. Front Virtual Real 5:1–12. https://doi.org/10.3389/frvir.2024.1258548. Clark, TK (2019) Effects of spaceflight on the vestibular system. In Pathak, Y, Araùjo dos Santos M, Zea, L (eds) Handbook of Space Pharmaceuticals. Springer, Cham. pp. 1–39.
Clark, TK, Newman, MC, Oman, CM, et al. (2015) Human perceptual overestimation of whole body roll tilt in hypergravity. J Neurophysiol 113:2062–2077. https://doi.org/10.1152/jn.00095.2014. Clemens, IA, De Vrijer, M, Selen, LPJ, et al. (2011) Multisensory processing in spatial orientation: An inverse probabilistic approach. J Neurosci 31:5365–5377.
Clément, G, Berthoz, A, Cohen, B, et al. (2003) Perception of the spatial vertical during centrifugation and static tilt. In Buckley, J, Homick, J (eds) The Neurolab Spacelab Mission: Neuroscience Research in Space. NASA, Houston, pp. 5–10.
Clément, G, Boyle, RD, George, KA, et al. (2020a) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123:2037–2063. https://doi.org/10.1152/jn.00476.2019. Clément, G, Moore, SJ, Raphan, T, Cohen, B (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res 138:410–418. https://doi.org/10.1007/s002210100706. Corballis, MC, Zbrodoff, NJ, Shetzer, LI, Butler, PB (1978) Decisions about identity and orientation of rotated letters and digits. Mem Cogn 6:98–107.
Correia, MJ, Hixson, WC, Niven, JI (1968) On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol Suppl 230:1–20.
Creem-Regehr, SH, Stefanucci, JK, Bodenheimer, B (2023) Perceiving distance in virtual reality: Theoretical insights from contemporary technologies. Philos Trans R Soc B Biol Sci 378:1–12. https://doi.org/10.1098/rstb.2021.0456. Curthoys, IS (1996) The role of ocular torsion in visual measures of vestibular function. Brain Res Bull 40:404–405.
Cuturi, LF, Gori, M (2019) Biases in the visual and haptic subjective vertical reveal the role of proprioceptive/vestibular priors in child development. Front Neurol 10:1–10. https://doi.org/10.3389/fneur.2018.01151. De Beer, GR (1947) How animals hold their heads. Proc Linn Soc 159:125–139.
de Dieuleveult, AL, Siemonsma, PC, van Erp, JBF, Brouwer, A-M (2017) Effects of aging in multisensory integration: A systematic review. Front Aging Neurosci 9:1–14. https://doi.org/10.3389/fnagi.2017.00080. de Winkel KN, Clément G, Groen, EL, Werkhoven, PJ (2012) The perception of verticality in lunar and Martian gravity conditions. Neurosci Lett 529:7–11.
de Winkel, KN, Kurtz, M, Bülthoff, HH (2018b) Effects of visual stimulus characteristics and individual differences in heading estimation. J Vis 18:1–17. https://doi.org/10.1167/18.11.9. De Witt, JK, Edwards, WB, Scott-Pandorf, MM, et al. (2014) The preferred walk to run transition speed in actual lunar gravity. J Exp Biol 217:3200–3203. https://doi.org/10.1242/jeb.105684. Delle Monache, S, Indovina, I, Zago, M, et al. (2021) Watching the effects of gravity. Vestibular cortex and the neural representation of “visual” gravity. Front Integr Neurosci 15: 1–17.
Dyde, RT, Jenkin, MR, Harris, LR (2006) The subjective visual vertical and the perceptual upright. Exp Brain Res 173:612–622.
Einstein, A (1908) Über das Relativitätsprinzip und die aus dem selben gezogenen Folgerungen. Jahrb Radioakt 4:411–462.
A, Ekstrom, Spiers, HJ, Bohbot, VD, Rosenbaum, RS (2018) Human Spatial Navigation. Princeton University Press, Princeton, NJ.
Ernst, MO, Banks, MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433. https://doi.org/10.1038/415429a. Evans, L, Champion, RA, Rushton, SK, Warren, PA (2020) Detection of scene-relative object movement and optic flow parsing across the adult lifespan. J Vis 20(9):12:1–18.
Fajen, BR, Warren, WH (2000) Go with the flow. Trends Cogn Sci 4:369–370.
Fernandez, C, Goldberg, JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995.
Fetter, M, Haslwanter, T, Misslisch, H, Tweed, D (1997) Three-dimensional kinematics of eye, head and limb movements. Harwood Academic, Amsterdam.
Fraser, LE, Makooie, B, Harris, LR (2015) The subjective visual vertical and the subjective haptic vertical access different gravity estimates. PLOS One 10:1–20.
Frisby, JP. (2010) Seeing: The computational approach to biological vision, 2nd ed. MIT Press, Boston, MA.
Frith, CD, Blakemore, SJ, Wolpert, DM (2000) Abnormalities in the awareness and control of action. Philos Trans R Soc Lond B Biol Sci 355:1771–1788.
Gallagher, M, Choi, R, FerrÃ, ER (2020) Multisensory interactions in virtual reality: Optic flow reduces vestibular sensitivity, but only for congruent planes of motion. Multisensory Res 33:625–644. https://doi.org/10.1163/22134808-20201487. Gianna, C, Heimbrand, S, Gresty, M, et al. (1996) Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function. Brain Res Bull 40:443–449.
JJ, Gibson (1950) The Perception of the Visual World. Houghton Mifflin, Boston.
Gibson, JJ (1966) The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston.
AR, Girshick, Banks, MS (2009) Probabilistic combination of slant information: Weighted averaging and robustness as optimal percepts. J Vis 9:1–36. https://doi.org/10.1167/9.9.8. Glass, SM, Rhea, CK, Wittstein, MW, et al. (2018) Changes in posture following a single session of long-duration water immersion. J Appl Biomech 34:435–441. https://doi.org/10.1123/jab.2017-0181. Goodale, MA, Milner, AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25.
Graybiel, A (1952) The oculogravic illusion. Am Med Assoc Arch Ophthalmol 48:605–615.
Graybiel, A, Patterson, JL (1955) Thresholds of stimulation of the otolith organs as indicated by the oculogravic illusion. J Appl Physiol 7:666–670.
Green, AM, Angelaki, DE (2003) Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J Neurosci 23:9265–9275.
Harris, LR, Herpers, R, Jenkin, M, et al. (2012a) The relative contributions of radial and laminar optic flow to the perception of linear self-motion. J Vis 12:1–10. https://doi.org/10.1167/12.10.7. LR, Harris, Jenkin, MR, Dyde, RT (2012b) The perception of upright under lunar gravity. J Gravitational Physiol 2:9–16.
Harris, LR, Jenkin, M, Herpers, R (2022) Long-duration head down bed rest as an analog of microgravity: Effects on the static perception of upright. J Vestib Res 32:325–340. https://doi.org/10.3233/VES-210016. Helland, A, Lydersen, S, Lervåg, L-E, et al. (2016) Driving simulator sickness: Impact on driving performance, influence of blood alcohol concentration, and effect of repeated simulator exposures. Accid Anal Prev 94:180–187. https://doi.org/10.1016/j.aap.2016.05.008. H von, Helmholtz. (1866) Handbuch der physiologischen Optik (Handbook of Physiological Optics). Voss, Leipzig.
Hershberger, W (1970) Attached-shadow orientation perceived as depth by chickens reared in an environment illuminated from below. J Comp Physiol Psychol 73:407–411.
Hollands, MA, Patla, AE, Vickers, JN (2002) “Look where you’re going!”: Gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res Exp Hirnforsch Expérimentation Cérébrale 143:221–230. https://doi.org/10.1007/s00221-001-0983-7. Holst, E, Mittelstaedt, H (1971) The principle of reafference: Interactions between the central nervous system and the peripheral organs. PC Dodwell Ed Trans Percept Process Stimul Equiv Pattern Recognit 41–72.
Howard, IP (1982) Human Visual Orientation. John Wiley, New York.
Howard, IP, Bergstrom, SS, Ohmi, M (1990) Shape from shading in different frames of reference. Perception 19:523–530.
Hülemeier, AG, Lappe, M (2020) Combining biological motion perception with optic flow analysis for self-motion in crowds. J Vis 20:1–15. https://doi.org/10.1167/JOV.20.9.7. Hummel, N, Cuturi, LF, MacNeilage, PR, Flanagin, VL (2016) The effect of supine body position on human heading perception. J Vis 16:1–11. https://doi.org/10.1167/16.3.19. Israël, I, Fetter, M, Koenig, E (1993) Vestibular perception of passive whole-body rotation about horizontal and vertical axes in humans: Goal-directed vestibulo-ocular reflex and vestibular memory-contingent saccades. Exp Brain Res 96:335–346. https://doi.org/10.1007/BF00227113. Iwase, S, Nishimura, N, Tanaka, K, et al. (2020) Effects of microgravity on human physiology. In Beyond LEO: Human Health Issues for Deep Space Exploration. IntechOpen. http://dx.doi.org/10.5772/intechopen.90700. HL, Jenkin, Jenkin, MR, Dyde, RT, Harris, LR (2004) Shape-from-shading depends on visual, gravitational, and body-orientation cues. Perception 33:1453–1461.
Joassin, R, Bonniaud, V, Barra, J, et al. (2010) Somaesthetic perception of the vertical in spinal cord injured patients: A clinical study. Ann Phys Rehabil Med 53:568–574. https://doi.org/10.1016/j.rehab.2010.07.005. Jörges, B, Bury, N, McManus, M, et al. (2024) The effects of long-term exposure to microgravity and body orientation relative to gravity on perceived traveled distance. Npj Microgravity 10:1–8. https://doi.org/10.1038/s41526-024-00376-6. Kleffner, DA, Ramachandran, VS (1992) On the perception of shape from shading. Percept Psychophys 52:18–36.
Knill, DC (2007) Robust cue integration: A Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant. J Vis 7:1–24. https://doi.org/10.1167/7.7.5. Kooijman, L, Berti, S, Asadi, H, et al. (2024) Measuring vection: A review and critical evaluation of different methods for quantifying illusory self-motion. Behav Res Methods 56:2292–2310. https://doi.org/10.3758/s13428-023-02148-8. Körding, KP, Beierholm, UR, Ma, WJ, et al. (2007) Causal inference in multisensory perception. PLOS One 2:1–10.
Kotian, V, Irmak, T, Pool, D, Happee, R (2024) The role of vision in sensory integration models for predicting motion perception and sickness. Exp Brain Res 242:685–725. https://doi.org/10.1007/s00221-023-06747-x. Krala, M, van Kemenade, B, Straube, B, et al. (2019) Predictive coding in a multisensory path integration task: An fMRI study. J Vis 19:1–15. https://doi.org/10.1167/19.11.13. Lackner, JR, DiZio, P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:2–26.
Lake, A (1893) Illusion Apparatus. US Patent 508227.
Landy, MS, Maloney, LT, Johnston, EB, Young, M (1995) Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Res 35:389–412. https://doi.org/10.1016/0042-6989(94)00176-M. Laurens, J, Angelaki, DE (2017) A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 6:1–45. https://doi.org/10.7554/eLife.28074. Lechner-Steinleitner, S, Schone, H (1980) The subjective vertical under “dry” and “wet” conditions at clockwise and counterclockwise changed positions and the effect of a parallel-lined background field. Psychol Res 41:305–317.
Liegeois-Chauvel, C, Musolino, A, Chauvel, P (1991) Localization of the primary auditory area in man. Brain 114:139–153.
Lobmaier, JS, Mast, FW (2007) The Thatcher illusion: Rotating the viewer instead of the picture. Perception 36:537–546.
Longuet-Higgins, HC, Prazdny, K (1980) The interpretation of a moving retinal image. Proceeding R Soc Lond 208:385–397.
Mach, E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. W. Engelmann, Leipzig.
Mackenzie, SW, Smith, CP, Tremblay, MF, et al. (2024) Bed rest impairs the vestibular control of balance. J Physiol. 602:2985–2998. https://doi.org/10.1113/JP285834. MacNeilage, PR, Banks, MS, Berger, DR, Bülthoff, HH (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp Brain Res 179:263–290.
MacNeilage, PR, Banks, MS, DeAngelis, GC, Angelaki, DE (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J Neurosci 30:9084–9094.
Mamassian, P, Goutcher, R (2001) Prior knowledge on the illumination position. Cognition 81:B1–B9.
Mast, FW, Jarchow, T (1996) Perceived body position and the visual horizontal. Brain Res Bull 40:393–398.
Mast, FW, Kosslyn, SM, Berthoz, A (1999) Visual mental imagery interferes with allocentric orientation judgements. Cogn Neurosci 10:3549–3553.
McCarthy, J, Castro, P, Cottier, R, et al. (2021) Multisensory contribution in visuospatial orientation: An interaction between neck and trunk proprioception. Exp Brain Res 239:2501–2508. https://doi.org/10.1007/s00221-021-06146-0. McMullen, PA, Jolicoeur, P (1992) Reference frame and effects of orientation of finding the tops of rotated objects. J Exp Psychol Hum Perc Perf 3:807–820.
Melvill Jones, G, Spells, KE (1963) A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc R Soc Lond B Biol Sci 157:403–419. https://doi.org/10.1098/rspb.1963.0019. Merfeld, DM (2003) Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: A new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res Equilib Orientat 13:309–320.
Merfeld, DM, Park, S, Gianna-Poulin, C, et al. (2005a) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. J Neurophysiol 94:186–198. https://doi.org/10.1152/jn.00904.2004. Merfeld, DM, Park, S, Gianna-Poulin, C, et al. (2005b) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation. J Neurophysiol 94:199–205.
Merfeld, DM, Zupan, L, Peterka, RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618. https://doi.org/10.1038/19303. Mergner, T, Schrenk, R, Muller, C (1989) Human DC scalp potentials during vestibular and optokinetic stimulation – non-specific responses. Electroencephalogr Clin Neurophysiol 73:322–333.
Mertz, S, Lepecq, JC (1998) Test of a vestibular imagery in man – interaction between imagery and perception. Eur J Neurosci 10:15109.
Mittelstaedt, H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281.
Mittelstaedt, H (1996) Somatic graviception. Biol Psychol 42:53–74.
Mittelstaedt, H (1999) The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 871:334–344.
Morgenstern, Y, Murray, RM, Harris, LR (2011) The human visual system’s assumption that light comes from above is weak. Proceeding Natl Acad Sci 108:12551–12553. https://doi.org/10.1073/pnas.1100794108. Müller, GE (1918) Über das Aubertsche Phënomen. Z Sinnesphysiol 49:109–246.
Mündermann, L, Corazza, S, Andriacchi, TP (2006) The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J NeuroEngineering Rehabil 3:1–11. https://doi.org/10.1186/1743-0003-3-6. Murata, K, Seno, T, Ozawa, Y, Ichihara, S (2014) Self-motion perception induced by cutaneous sensation caused by constant wind. Psychology 5:1777–1782.
Murovec, B, Spaniol, J, Campos, JL, Keshavarz, B (2021) Multisensory effects on illusory self-motion (Vection): The role of visual, auditory, and tactile cues. Multisensory Res 34:869–890. https://doi.org/10.1163/22134808-bja10058. Nakamura, J, Shiozaki, T, Tsujimoto, N, et al. (2020) Role of somatosensory and/or vestibular sensory information in subjective postural vertical in healthy adults. Neurosci Lett 714:1–5. https://doi.org/10.1016/j.neulet.2019.134598. Naval Air Training Command (2002) Joint Aerospace Physiology Student Guide. Corpus Chrisi, Texas.
Noel, J-P, Bill, J, Ding, H, et al. (2023) Causal inference during closed-loop navigation: Parsing of self- and object-motion. Philos Trans R Soc B Biol Sci 378:1–13. https://doi.org/10.1098/rstb.2022.0344. Norcross, J, Lee, L, Witt, JKD, et al. (2009) Feasibility of Suited 10-km Ambulation “Walkback” on the Moon. Final Rep EVA Walkback Test EWT Hanover MD NASA Tech Rep TP-2009–214796.
Oman, CM (2003) Human visual orientation in weightlessness. In Harris, LR, Jenkin, M (eds) Levels of Perception. Springer-Verlag, New York, pp. 375–398.
Oman, CM (2007) Spatial orientation and navigation in microgravity. In Mast, FW, Jänke, L (eds) Spatial Processing in Navigation, Imagery and Perception. Springer, New York, pp. 209–248.
Oman, CM, Howard, IP, Smith, T, et al. (2003) The role of visual cues in microgravity spatial orientation. Neurolab Spacelab Mission 69–81.
Paez, YM, Mudie, LI, Subramanian, PS (2020) Spaceflight associated neuro-ocular syndrome (Sans): A systematic review and future directions. Eye Brain 12:105–117. https://doi.org/10.2147/EB.S234076. Palmisano, S, Gillam, BJ, Blackburn, SG (2000) Global-perspective jitter improves vection in central vision. Perception 29:57–67. https://doi.org/10.1068/p2990. Parker, DE, Reschke, MF, Arrott, AP, et al. (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness – implications for preflight training. Aviat Space Environ Med 56:601–606.
Previc, FH, Ercoline, WR (2004) Spatial disorientation in aviation. In Vol 203 Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Inc, Reston, Virginia, USA.
Ramachandran, VS (1988) The perception of shape from shading. Nature 331:163–166.
Rasmussen, R, Cole, J, Kuperman, M, Moore, R (2000) Common snowfall conditions associated with aircraft takeoff accidents. J Aircr – J Aircr 37:110–116. https://doi.org/10.2514/2.2568. Redlick, FP, Jenkin, M, Harris, LR (2001) Humans can use optic flow to estimate distance of travel. Vision Res 41:213–219.
Riecke, BE, Murovec, B, Campos, JL, Keshavarz, B (2023) Beyond the eye: Multisensory contributions to the sensation of illusory self-motion (vection). Multisensory Res 36:827–864. https://doi.org/10.1163/22134808-bja10112. Rineau, A-L, Bringoux, L, Sarrazin, J-C, Berberian, B (2023) Being active over one’s own motion: Considering predictive mechanisms in self-motion perception. Neurosci Biobehav Rev 146:1–19. https://doi.org/10.1016/j.neubiorev.2023.105051. Rock, I, Heimer, W (1957) The effect of retinal and phenomenal orientation on the perception of form. Am J Psychol 70:493–511.
Rock, I, Schreiber, C, Ro, T (1994) The dependence of two-dimensional shape perception on orientation. Perception 23:1409–1426.
Rosas, P, Wagemans, J, Ernst, MO, Wichmann, FA (2005) Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination. J Opt Soc Am A 22:801–809. https://doi.org/10.1364/JOSAA.22.000801. Roy, JE, Cullen, KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci Off J Soc Neurosci 21:2131–2142.
Rupert, AH, Lawson, BD, Basso, JE (2016) Tactile Situation Awareness System: Recent developments for aviation. Proc Hum Factors Ergon Soc Annual Meeting. 721–725. https://doi.org/10.1177/1541931213601165. Sangals, J, Heuer, H, Manzey, D, Lorenz, B (1999) Changed visuomotor transformations during and after prolonged microgravity. Exp Brain Res 129:378–390. https://doi.org/10.1007/s002210050906. Schuler, JR, Bockisch, CJ, Straumann, D, Tarnutzer, AA (2010) Precision and accuracy of the subjective haptic vertical in the roll plane. BMC Neurosci 11:1–11.
Seno, T, Ogawa, M, Ito, H, Sunaga, S (2011) Consistent air flow to the face facilitates vection. Perception 40:1237–1240.
Shaikh, D (2022) Learning multisensory cue integration: A computational model of crossmodal synaptic plasticity enables reliability-based cue weighting by capturing stimulus statistics. Front Neural Circuits 16:1–19. https://doi.org/10.3389/fncir.2022.921453. Sinnott, C, Liu, J, Matera, C, et al. (2019) Underwater Virtual Reality System for Neutral Buoyancy Training: Development and Evaluation. In 25th ACM Symposium on Virtual Reality Software and Technology. ACM, Parramatta NSW Australia, pp 1–9.
Snowden, RJ, Stimpson, N, Ruddle, RA (1998) Speed perception fogs up as visibility drops. Nature 392:450.
Srinivasan, MV, Zang, S, Bidwell, N (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2513–2522.
Stoffregen, TA, Riccio, GE (1988) An ecological theory of orientation and the vestibular system. Psychol Rev 95:3–14.
Sylvestre, PA, Choi, JT, Cullen, KE (2003) Discharge dynamics of oculomotor neural integrator neurons during conjugate and disjunctive saccades and fixation. J Neurophysiol 90:739–754.
AA, Tarnutzer, Bockisch, CJ, Straumann, D (2010) Roll-dependent modulation of the subjective visual vertical: Contributions of head-and trunk-based signals. J Neurophysiol 103:934–941. https://doi.org/10.1152/jn.00407.2009. Tarnutzer, AA, Bockisch, C, Straumann, D, Olasagasti, I (2009) Gravity dependence of subjective visual vertical variability. J Neurophysiol 102:1657–1671. https://doi.org/10.1152/jn.00007.2008. JL, Taylor (1992) Perception of the orientation of the head on the body in man. In Berthoz, A, Graf, W, Vidal, PP (eds) The Head-Neck Sensory Motor System. Oxford University Press, Oxford, pp. 488–490.
Teaford, M, Mularczyk, ZJ, Gernon, A, et al. (2023) Joint contributions of auditory, proprioceptive and visual cues on human balance. Multisensory Res 36:865–890. https://doi.org/10.1163/22134808-bja10113. Telford, L, Frost, BJ (1993) Factors affecting the onset and magnitude of linear vection. Percept Psychophys 53:682–692.
Thompson, P (1980) Margaret Thatcher: A new illusion. Perception 9:483–484.
Torok, A, Gallagher, M, Lasbareilles, C, Ferrè, ER (2019) Getting ready for Mars: How the brain perceives new simulated gravitational environments. Q J Exp Psychol 72:2342–2349. https://doi.org/10.1177/1747021819839962. Tribukait, A (2006) Subjective visual horizontal in the upright posture and asymmetry in roll-tilt perception: Independent measures of vestibular function. J Vestib Res 16:35–43.
Tsakiris, M (2010) My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia 48:703–712.
Tsakiris, M, Costantini, M, Haggard, P (2008) The role of the right temporo-parietal junction in maintaining a coherent sense of one’s body. Neuropsychologia 46:3014–3018.
van den Berg, AV, Collewijn, H (1988) Directional asymmetries of human optokinetic nystagmus. Exp Brain Res 70:597–604.
Von Holst, E, Mittelstaedt, H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476.
Wang, Y, Du, B, Wei, Y, So, RHY (2021b) Visually induced roll circular vection: Do effects of stimulation velocity differ for supine and upright participants? Front Virtual Real 2:1–10. https://doi.org/10.3389/frvir.2021.611214. Wann, JP, Swapp, DK (2000) Why you should look where you are going. Nat Neurosci 3:647–648.
WH, Warren, Hannon, DJ (1990) Eye-movements and optical-flow. J Opt Soc Am Ser A 7:160–169.
WH, Warren, Li, LY, Ehrlich, SM, et al. (1996) Perception of heading during eye-movements uses both optic flow and eye position information. Invest Ophthalmol Vis Sci 37:2066.
Warren, PA, Rushton, SK (2007) Perception of object trajectory: Parsing retinal motion into self and object movement components. J Vis 7:1–11. https://doi.org/10.1167/7.11.2. Wetzig, J, Reiser, M, Martin, E, et al. (1990) Unilateral centrifugation of the otoliths as a new method to determine bilateral asymmetries of the otolith apparatus in man. Acta Astronaut 21:519–525. https://doi.org/10.1016/0094-5765(90)90070-2. Wilson, JA, Anstis, SM (1969) Visual delay as a function of luminance. Am J Psychol 82:350–358.
Wilson, VJ, Melvill Jones, G (1979) Mammalian Vestibular Physiology. Plenum, New York.
Xu, J., Cui, J., Hao, Y., Xu, B. (2024) Multi-cue guided semi-supervised learning toward target speaker separation in real environments. IEEEACM Trans Audio Speech Lang Proc 32:151–163.
Yardley, L (1990) Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual-field. Percept Psychophys 48:131–134.
LR, Young, Oman, CM, Watt, DGD, et al. (1984) Spatial orientation in weightlessness and readaptation to earth’s gravity. Science 225:205–208.
Zanchi, S, Cuturi, LF, Sandini, G, Gori, M (2022) Interindividual differences influence multisensory processing during spatial navigation. J Exp Psychol Hum Percept Perform 48:174–189. https://doi.org/10.1037/xhp0000973.