Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-03T18:29:24.506Z Has data issue: false hasContentIssue false

7 - Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking

Published online by Cambridge University Press:  27 January 2010

Aimé Fournier
Affiliation:
Yale University Department of Physics, New Haven CT 06520-8120, USA
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
Get access

Summary

Abstract

Atmospheric blocking is an irregularly recurring anomalous state of the atmospheric circulation which is large and spatially localized. Atmospheric blocking during three unusual winter months is studied by multiresolution analysis and a new periodic wavelet-based adaptation of traditional Fourier series-based energetics. New forms of the transfer functions of kinetic energy with the mean and eddy parts of the atmospheric circulation are introduced. These quantify the zonally localized conversion of energy between scales. A new accounting method for wavelet-indexed transfers permits the introduction of a physically meaningful zonally localized scale flux function. These techniques are applied to National Meteorological Center data. Blocking is found to be largely described by just the second-largest scale part of the multiresolution analysis. New support is found for the hypothesis that blocking is partially maintained by a particular kind of upscale cascade. Specifically, in both Atlantic and Pacific blocking cases there is a downscale (upscale) cascade west (east) of the block.

Introduction

Although wavelet analysis in the time domain has been applied to atmospheric boundary layer turbulence (e.g. [8]) and climatic time series (e.g. [3, 15, 17]), and in the space domain to numerically simulated turbulence [7, 9, 18], there has not been any application to observed global synoptic meteorological data. A broad review of wavelets applied to turbulence is presented by Farge et al., this volume, Chapter 4. A collection of blocking studies is contained in [1]. During blocking, the normal progression of weather is locally inhibited.

Type
Chapter
Information
Wavelets in Physics , pp. 263 - 298
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×