Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-07T18:17:36.065Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  02 April 2022

Lee A. Newsom
Affiliation:
Flagler College
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Wood in Archaeology , pp. 276 - 317
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, E., 1976. Rediscovering hackmatack. The Woodenboat 9:4446.Google Scholar
Akachuku, A. E., 1991. Wood growth determined from growth ring analysis in red pine (Pinus resinosa) trees forced to lean by a hurricane. IAWA Bulletin n.s. 12 (3):263274.CrossRefGoogle Scholar
Aldenderfer, M., 2005. Statistics for archaeology. In Maschner, H. D. G. and Chippindale, C. (eds.), Handbook of Archaeological Methods, Vol. 1. Oxford: AltaMira Press, pp. 501553.Google Scholar
Alperson-Afil, N., Sharon, G., and Kislev, M. et al., 2009. Spatial organization of hominin activities at Gesher Benot Ya‘aqov, Israel. Science 326:16771680.CrossRefGoogle ScholarPubMed
American Association for the Advancement of Science (AAAS), 2015. Climate change turning Atacama mummies into black ooze. News in Brief. Science 347(6227):1180.Google Scholar
Anderegg, W. R. L., and Meinzer, F. C., 2015. Wood anatomy and plant hydraulics in a changing environment. In Hacke, U. (ed.), Functional and Ecological Xylem Anatomy. Heidelberg: Springer International Publishing, pp. 235253.Google Scholar
Anderegg, W. R. L., Schwalm, C., and Biondi, F. et al., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349(6247):528532.Google Scholar
Angeles, G., 2001. New techniques for the anatomical study of charcoalified wood. IAWA Journal 22(3):245254.Google Scholar
Angeles, G., Ortega-Escalona, F., and Madero Vega, C., 2008. Special techniques for anatomical study of charcoal. In Fiorentino, G. and Magri, D. (eds.), Charcoals from the Past: Cultural and Palaeoenvironmental Implications. BAR International Series 1807. Oxford: BAR Publishing, pp. 13.Google Scholar
Arranz-Otaegui, A., 2017. Evaluating the impact of water flotation and the state of the wood in archaeological wood charcoal remains: implications for the reconstruction of past vegetation and identification of firewood gathering strategies at Tell Qarassa North (south Syria). Quaternary International 457(1):6073.Google Scholar
Aseni Amorós, M. V., 2002. Wood from ancient Egypt: the Ramesseum and the Valley of the Queens (18th dynasty-Roman period). A preliminary report. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 273277.Google Scholar
Asouti, E., and Austin, P., 2005. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environmental Archaeology 10:118.CrossRefGoogle Scholar
Baas, P., 1976. Some functional and adaptive aspects of vessel member morphology. In Baas, P., Bolton, A. J., and Catling, D. M. (eds.), Wood Structure in Biological and Technological Research. Leiden Botanical Series No. 3. Leiden: Leiden University Press, pp. 157181.Google Scholar
Baas, P., Battipaglia, G., de Micco, V., Lens, F., and Wheeler, E. (eds.), 2013. Wood structure in plant biology and ecology. IAWA Journal 34(4):331332.Google Scholar
Baas, P., Beeckman, H., Cufar, K., and de Micco, V. (eds.), 2016. Preface: functional traits in wood anatomy. IAWA Journal 37(2):124126.Google Scholar
Baas, P., and Carlquist, S., 1985. A comparison of the ecological wood anatomy of the floras of southern California and Israel. IAWA Bulletin n.s. 6(4):349353.CrossRefGoogle Scholar
Baas, P., and Miller, R. B., 1985. Functional and ecological wood anatomy: some introductory comments. IAWA Bulletin n.s. 6(4):281282.CrossRefGoogle Scholar
Baas, P., Schmid, R., and van Heuven, B. J., 1986. Wood anatomy of Pinus longaeva (bristlecone pine) and the sustained length-on-age increase of its tracheids. IAWA Bulletin n.s. 7(3):221228.CrossRefGoogle Scholar
Baas, P., and Schweingruber, F. H., 1987. Ecological trends in the wood anatomy of trees, shrubs, and climbers from Europe. IAWA Bulletin n.s. 8(3):245274.Google Scholar
Baas, P., and Vetter, R. E. (eds.), 1989. Growth Rings in Tropical Woods. Proceedings of the joint session of IUFRO P5.05 Tree Ring Analysis and IAWA on Age and Growth Rate Determination in Tropical Trees, held on 18 May 1988, São Paulo, Brazil. IAWA Bulletin n.s. 10(2):95174.Google Scholar
Baas, P., Werker, E., and Fahn, A., 1983. Some ecological trends in vessel characters. IAWA Bulletin n.s. 6(2–3):349353.CrossRefGoogle Scholar
Babos, K., 1993. Tyloses formation and the state of health of Quercus petraea trees in Hungary. IAWA Journal 14(3):239243.Google Scholar
Baillie, M. G. L., 1982. Tree-Ring Dating and Archaeology. Chicago, IL: University of Chicago Press.Google Scholar
Baillie, M. G. L. 1995. A Slice Through Time: Dendrochronology and Precision Dating. London: Batsford.Google Scholar
Baillie, M. G. L. 1999. Exodus to Arthur: Catastrophic Encounters with Comets. London: Batsford.Google Scholar
Bär, A., Bräuning, A., and Löffler, J., 2007. Ring-width chronologies of the alpine dwarf shrub Empetrum hermaphroditum from the Norwegian mountains. IAWA Journal 28(3):325338.Google Scholar
Barbour, R. J., 1985. The condition and dimensional stabilization of highly deteriorated waterlogged hardwoods. In Ramière, R. and Colardelle, M. (eds.), Waterlogged Wood: Study and Conservation, Proceedings of the 2nd ICOM Waterlogged Wood Working Group Conference, Grenoble. Grenoble: Centre D’etude et de Traitement des Bois Gorges D’eau, pp. 2337.Google Scholar
Barbour, R. J. 1990. Treatments for waterlogged and dry archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 177192.Google Scholar
Barefoot, A. C., and Hankins, F. W., 1982. Identification of Modern and Tertiary Woods. Oxford: Oxford University Press.Google Scholar
Barker, A., 2003. Archaeological ethics: museums and collections. In Zimmerman, L. J., Vitelli, K. D., and Hollowell-Zimmer, J. (eds.), Ethical Issues in Archaeology. Walnut Creek, CA: AltaMira Press, pp. 7183.Google Scholar
Barlow, B., Lauer, D. K., and Kush, J. S., 2012. Site Index for Longleaf Pine. Alabama Cooperative Extension System, ANR-1424, web only, www.aces.edu, accessed 15 August 2018.Google Scholar
Barlow, C., 2000. The Ghosts of Evolution: Nonsensical Fruit, Missing Partners, and Other Ecological Anachronisms. New York: Basic Books.Google Scholar
Barlow, C. 2001. Ghost stories from the Ice Age: some plants are hunted by large mammals from another era. Natural History 110(7):6267.Google Scholar
Barnes, B. V., Zak, D. R., Denton, S. R., and Spurr, S. H., 1998. Forest Ecology, 4th edn. New York: John Wiley.Google Scholar
Barnett, J. R., and Jeronimidis, G., eds., 2003. Wood Quality and its Biological Basis. Boca Raton, FL: CRC Press.Google Scholar
Barnett, J. R., and Jeronimidis, G. 2003. Reaction wood. In Barnett, J. R. and Jeronimidis, G. (eds.), Wood Quality and Its Biological Basis. Boca Raton, FL: CRC Press, pp. 118136.Google Scholar
Bauch, J., 1986. Characteristics and response of wood in declining trees from forests affected by pollution. IAWA Bulletin n.s. 7(4):1986.Google Scholar
Baxter, M. J., 2001. Multivariate analysis in archaeology. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. New York: John Wiley, pp. 685702.Google Scholar
Bazile, F., Ogereau, P., Vernet, J., and Martin, A., 2002. Prehistoric Holocene fires at the Causse Méjean (Lozère, France), climatic or human impact? In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 5377.Google Scholar
Beck, R. A., Newsom, L. A., Rodning, C. B., and Moore, D. G., 2017. Spaces of entanglement: labor and construction practice at Fort San Juan de Joara. Historical Archaeology 15(2),published online 21 April 2017, DOI 10.1007/s41636-017–0022-6.Google Scholar
Beckett, S. C., and Hibbert, F. A., 1978. The influence of man on the vegetation of the Somerset Levels—a summary. In Coles, J. M. (ed.), Somerset Levels Papers, Somerset Levels Project, No. 4. Hertford: Stephen Austin, pp. 8690.Google Scholar
Beekman, H., 2016. Opinion paper—wood anatomy and trait-based ecology. IAWA Journal 37(2):127151.Google Scholar
Bell, M., 2013. Intertidal survey and excavation. In Menottii, F. and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 467481.Google Scholar
Benkova, V., and Schweingruber, F. H., 2004. Russian Wood Anatomy. Bern: Paul Haupt.Google Scholar
Bentsen, S. E., 2014. Using pyrotechnology: fire-related features and activities with a focus on the African Middle Stone Age. Journal of Archaeological Research 22(2):141175.Google Scholar
Berger, J., and Thiébault, S., 2002. The study and significance of charcoal as an indicator of ancient fires: an application to the middle Rhone Valley (France). In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 2541.Google Scholar
Berna, F., Goldberg, P., Horwitz, L. K. et al., 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape Province, South Africa. PNAS www.pnas.org/cgi/doi/10.1073/pnas.1117620109.Google Scholar
Bernabei, M., and Bontadi, J., 2011. Distinguishing root- and stem-wood of Picea abies. IAWA Journal 32(3):375382.Google Scholar
Bernal-Salazar, B., Terrazas, T., and Alvarado, D., 2004. Impact of air pollution on ring width and tracheid dimensions in Abies religiosa in the Mexico City Basin. IAWA Journal 25(2):205215.Google Scholar
Bernard, V., Renaudin, S., and Marguerie, D., 2006. Evidence of trimmed oaks (Quercus sp.) in northwestern France during the early Middle Ages (9th–11th centuries AD). In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 103108.Google Scholar
Billamboz, A., 2014. Timber from old and young trees: dendrotypology as the backbone of the dendroarchaeological investigations of prehistoric fish traps and pile dwellings in Southwest Germany. Journal of Wetland Archaeology 14:4857.Google Scholar
Bishop, R. R., Church, M. J., and Rowley-Conwy, P. A., 2015. Firewood, food and human niche construction: the potential role of Mesolithic hunter-gatherers in actively structuring Scotland’s woodlands. Quaternary Science Reviews 108:5175.Google Scholar
Blanchette, R. A., Nilsson, T., Daniel, G., and Abad, A., 1990. Biological degradation of wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 141174.Google Scholar
Blanchette, R. A., and Simpson, E., 1992. Soft rot and wood pseudomorphs in an ancient coffin (700 BC) from tumulus MM at Gordion, Turkey. IAWA Bulletin n.s. 13(2):201213.Google Scholar
Blarquez, O., Finsinger, W., and Carcaillet, C., 2013. Assessing paleo-biodiversity using low proxy influx. PLOS ONE 8(6):15.CrossRefGoogle ScholarPubMed
Bodin, S. C., Scheel-Ybert, R., Beauchêne, J., Molino, J., and Bremond, L., 2019. CharKey: an electronic identification key for wood charcoals of French Guiana. IAWA Journal 40(1):75–S20.Google Scholar
Bontadi, J., and Bernabei, M., 2016. Inside the Dogon masks: the selection of woods for ritual objects. IAWA Journal 37(1):8497.Google Scholar
Bortolus, A., 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37(2):114118.CrossRefGoogle ScholarPubMed
Bosman, M. T. M., 1997. Variability in wood properties of six-year-old planted meranti trees (Shorea leprosula, S. parvifolia and S. pauciflora, Dipterocarpaceae). IAWA Journal 18(4):405413.Google Scholar
Bosman, M. T. M., de Kort, I., van Genderen, M. K., and Baas, P., 1994. Radial variation in wood properties of naturally and plantation grown light red meranti (Shorea, Dipterocarpaceae). IAWA Journal 15(2):111120.Google Scholar
Boura, A., Le Péchon, T., and Thomas, R., 2011. Wood anatomy of the Mascarene Dombeyoideae: systematic and ecological implications. IAWA Journal 32(4):493519.Google Scholar
Boutain, J. R., Brown, A. R., Webb, D. T, and Toyofuku, B. H., 2010. Simplified procedure for hand fracturing, identifying and curating small macrocharcoal remains. IAWA Journal 31(2):139147.Google Scholar
Bower, B., 2009. Aping the Stone Age. Science News 176(11):2428.Google Scholar
Braga, J. W. B., Pastore, T. C.M., Coradin, V. T. R., Camargos, J. A. A., and da Silva, A. Riberio, 2011. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (CITES Appendix II). IAWA Journal 32(2):285296.Google Scholar
Branch, N., Canti, M., Clark, P., and Turney, C., 2005. Environmental Archaeology: Theoretical and Practical Approaches. Oxford: Oxford University Press.Google Scholar
Bräuning, A., de Ridder, M., and Zafirov, N. et al., 2016. Tree-ring features: indicators of extreme event impacts. IAWA Journal 37(2):206231.CrossRefGoogle Scholar
Bravo, S., 2010. Anatomical changes induced by fire-damaged cambium in two native tree species of the Chaco Region, Argentina. IAWA Journal 31(3):283292.Google Scholar
Briffa, K. R., Osborn, T. J., and Schweingruber, F. J., 2004. Large-scale temperature inferences from tree rings: a review. Global Planetary Change 40:1126.Google Scholar
Brodersen, C. R., 2016. Visualizing wood anatomy in three dimensions with high-resolution X-ray micro-tomography (MCT)—a review. IAWA Journal 34(4):408424.Google Scholar
Brokaw, N. V. L., 1985. Gap-phase regeneration in a tropical forest. Ecology 66(3):685687.Google Scholar
Buell, M. F., Buell, H. F., Small, J. A., and Monk, C. D., 1961. Drought effect on radial growth of trees in the William L. Hutcheson Memorial Forest, Bulletin of the Torrey Botanical Club 88(3):176180.Google Scholar
Buffington, A., and McCorriston, J., 2019. Wood exploitation patterns and pastoralist-environment relationships: charcoal remains from Iron Age Ṡhakal, Dhufar, Sultanate of Oman. Vegetation History and Archaeobotany 28(3):283294.Google Scholar
Burke, B., and Newsom, L. A., 2019. A square peg in a round hole: wood analysis from the Spring Break Wreck. In Ball, D. and Horrell, C. (eds.), 2019 ACUA Underwater Archaeology Proceedings. Advisory Council on Underwater Archaeology, Society for Historical Archaeology.Google Scholar
Buss, I. O., 1990. Elephant Life: Fifteen Years of High Population Density. Ames: Iowa State University Press.Google Scholar
Butterfield, R. P., Crook, R. P., Adams, R., and Morris, R., 1993. Radial variation in wood specific gravity, fibre length and vessel area for two Central American hardwoods: Hyeronima alchorneoides and Vochysia guatemalensis: natural and plantation-grown trees. IAWA Journal 14(2):153161.Google Scholar
Callado, C. H., da Silva Neto, S. J., Scarano, F. R., Barros, C. F., and Costa, C. G., 2001. Anatomical features of growth rings in flood-prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. IAWA Journal 22(1):2942.Google Scholar
Caple, C., 2001. Overview: degradation, investigation and preservation of archaeological evidence. In Brothwell, D. R and Pollard, A. M (eds.), Handbook of Archaeological Sciences. Chichester: John Wiley, pp. 587593.Google Scholar
Carlquist, S., 1961. Comparative Plant Anatomy. New York: Holt, Rinehart and Winston.Google Scholar
Carlquist, S. 1975. Ecological Strategies of Xylem Evolution. Berkeley: University of California Press.Google Scholar
Carlquist, S. 2009. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Botanical Journal of the Linnean Society 161:2665.Google Scholar
Carlquist, S. 2010. Comparative Wood Anatomy: Systematic, Ecological and Evolutionary Aspects of Dicotyledon Wood, 2nd ed. Heidelberg: Springer Verlag.Google Scholar
Carlquist, S. 2012. How wood evolves: a new synthesis. Botany 90:901940.CrossRefGoogle Scholar
Carlquist, S., and Hoekman, D. A., 1985. Ecological wood anatomy of the woody southern Californian flora. IAWA Bulletin n.s. 6(4):319347.Google Scholar
Carrión Marco, Y., 2006. Tres Montes (Navarra, Spain): dendrology and wood uses in an arid environment. In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 8393.Google Scholar
Caseldine, A. E., 1988. A wetland resource: the evidence for environmental exploitation in the Somerset Levels during the prehistoric period. In Murphy, P. and French, C. (eds.), The Exploitation of Wetlands. BAR British Series 186, Oxford: British Archaeological Reports, pp. 239265.Google Scholar
CCBER 2007–2011. Plant Anatomy Digital Archive, Vernon I. Cheadle and Katherine Esau Botanical Collections, Cheadle Center for Biodiversity and Ecological Restoration, Earth Research Institute, UC Santa Barbara, CA. Available at www.ccber.ucsb.edu/collections/botanical/plant_anatomy, accessed 12 December 2019.Google Scholar
Chabal, L., 1992. La représentativité paléo-écologique de charbons de bois archéologiques issues du bois de feu. Bulletin de la Société Botanique de France 139:213236.Google Scholar
Chabal, L. 1997. Forêts et sociétés en Languedoc (Néolithique final, Antiquité tardive): L’anthracologie, méthode et paléoécologie 63. Maison des Sciences de l’Homme, Paris : DAF.Google Scholar
Chalk, L., 1983a. Vessels. In Metcalfe, C. R. and Chalk, L. (eds.), Anatomy of the Dicotyledons: Volume II, Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press, pp. 212.Google Scholar
Chalk, L. 1983b. Tracheids. In Metcalfe, C. R. and Chalk, L. (eds.), Anatomy of the Dicotyledons: Volume II, Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press, pp. 1215.Google Scholar
Chalk, L. 1983c. Wood anatomy, phylogeny, and taxonomy. In Metcalfe, C. R. and Chalk, L. (eds.), Anatomy of the Dicotyledons: Volume II, Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press, pp. 108125.Google Scholar
Chamovitz, D., 2012. What a Plant Knows: A Field Guide to the Senses. New York: Scientific American/Farrar, Straus and Giroux.Google Scholar
Clair, B., Arinero, R., Lévèque, G., Ramonda, M., and Thibault, B., 2003. Imaging the mechanical properties of wood cell wall layers by atomic force modulation microscopy. IAWA Journal 24(3):223230.Google Scholar
Clair, B., Ruelle, J., Beauchêne, J., Prévost, M. F., and Fournier, M., 2006. Tension wood and opposite wood in 21 tropical rain forest species 1: occurrence and efficiency of the G-layer. IAWA Journal 27(3):329338.Google Scholar
Clausen, C. J., Cohen, A. D., Emiliani, C., Holman, J. A., and Stipp, J. J., 1979. Little Salt Spring, Florida: a unique underwater site. Science 203(4381):609614.Google Scholar
Coder, K. D., 2014. Components of Stems. Tree Anatomy Series, WSFNR14-15. The University of Georgia Warnell School of Forestry and Natural Resources.Google Scholar
Coles, B., 1988. The Somerset Levels: multidisciplinary investigations and a wealth of results. In Purdy, B. A. (ed.), Wet Site Archaeology. Caldwell, NJ: The Telford Press, pp. 89102.Google Scholar
Coles, B. 2001. The impact of beaver activity on stream channels: some implications for past landscapes and human activity. Journal of Wetland Archaeology 1:5582.Google Scholar
Coles, B. 2013. Reminiscences of a wetland archaeologist. In Menottii, F., and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 903919.Google Scholar
Coles, B., and Coles, J. M., 1989. People of the Wetlands: Bogs, Bodies and Lake-Dwellers. New York: Thames and Hudson.Google Scholar
Coles, J. M., 1988a. An assembly of death: bog bodies of northern and western Europe. In Purdy, B. A. (ed.), Wet Site Archaeology. Caldwell, NJ: The Telford Press, pp. 219235.Google Scholar
Coles, J. M. 1988b. A wetland perspective. In Purdy, B. A. (ed.), Wet Site Archaeology. Caldwell, NJ: The Telford Press, pp. 114.Google Scholar
Coles, J. M. 1989a. Prehistoric settlement in the Somerset Levels. In Coles, J. M. (ed.), Somerset Levels Papers, Somerset Levels Project, No. 15. Hertford: Stephen Austin., pp. 1433.Google Scholar
Coles, J. M. 1989b. The world’s oldest road. Scientific American 260(11):100106.Google Scholar
Coles, J. M. 1990. Waterlogged Wood: Guidelines on the Recording, Sampling, Conservation, and Curation of Structural Wood. London: English Heritage.Google Scholar
Coles, J. M. 2001. Of water-wings and wellingtons: wetland archaeology and the new journal. Journal of Wetland Archaeology 1:313.Google Scholar
Coles, J. M., Caseldine, A. E., and Morgan, R. A., 1982. The Eclipse Track 1980. In Coles, J. M. (ed.), Somerset Levels Papers, Somerset Levels Project, No. 8. Hertford: Stephen Austin, pp. 2639.Google Scholar
Coles, J. M., and Orme, B. J., 1984. Ten excavations along the Sweet Track (3200 BC). In Coles, J. M., Orme, B. J., and Rouillard, S. E. (eds.), Somerset Levels Papers 10. Somerset Levels Project. Hertford: Stephen Austin, pp. 545.Google Scholar
Coles, J. M., Orme, B. J., and Rouillard, S. E., 1985. Prehistoric woodworking from the Somerset Levels: 3. Roundwood. In Coles, J. M., Orme, B. J., and Rouillard, S. E. (eds.), Somerset Levels Papers 11. Somerset Levels Project. Hertford: Stephen Austin, pp. 2550.Google Scholar
Cook, R. A., and Comstock, A. R., 2014. Evaluating the old wood problem in a temperate climate: a Fort Ancient case study. American Antiquity 79(4):763775.Google Scholar
Corcuera, L., Camarero, J. J., and Gil-Pelegrin, E., 2004. Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. IAWA Journal 25(2):184204.Google Scholar
Corner, E. J. H., 1964. The Life of Plants. London: Weidenfeld and Nicolson.Google Scholar
Cornish, C., Gasson, P., and Nesbitt, M., 2014. The wood collection (xylarium) of the Royal Botanic Gardens, Kew. IAWA Journal 35(1):85104.Google Scholar
Costa, M. S., de Vasconcellos, T. J., Barros, C. F., and Callado, C. H., 2013. Does growth rhythm of a widespread species change in distinct growth sites? IAWA Journal 34(4):498509.CrossRefGoogle Scholar
Côté, W. A. Jr., and Day, A. D., 1965. Anatomy and ultrastructure of reaction wood. In Côté, W. A Jr. (ed.), Cellular Ultrastructure of Woody Plants. Syracuse, NY: Syracuse University Press, pp. 391418.Google Scholar
Coulter, E. M., 1966. The Toombs Oak: The Tree that Owned Itself, and Other Chapters of Georgia. Athens: University of Georgia Press.Google Scholar
Crivellaro, A., and Schweingruber, F. H., 2015. Stem Anatomical Features of Dicotyledons: Xylem, Phloem, Cortex, and Periderm Characteristics for Ecological and Taxonomical Analyses. Remagen: Kessel Publishing.Google Scholar
Crone, A., 2014. Dendrochronological studies of alder (Alnus glutinosa) on Scottish crannogs. Journal of Wetland Archaeology 14:2233.Google Scholar
Cronyn, J. M., 2001. The deterioration of organic materials. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. Chichester: John Wiley, pp. 627636.Google Scholar
Ĉufar, K., Griĉar, J., Zupanĉiĉ, M., Koch, G., and Schmitt, U., 2008. Anatomy, cell wall structure and topochemistry of water-logged archaeological wood aged 5,200 and 4,500 years. IAWA Journal 29(1):5568.Google Scholar
Cushing, F. H., 1897. Exploration of ancient Key Dwellers’ remains on the Gulf Coast of Florida. Proceedings of the American Philosophical Society 35(153):329448.Google Scholar
Cutler, D. F., 1976. Variation in root-wood anatomy. In Baas, P., Bolton, A. J., and Catling, D. M. (eds.), Wood Structure in Biological and Technological Research. Leiden Botanical Series No. 3, Leiden: Leiden University Press, pp. 143156.Google Scholar
Cutler, D. F., Botha, C. E. J., and Stevenson, D. W., 2008. Plant Anatomy: An Applied Approach. Oxford: Blackwell.Google Scholar
Cutler, D. F., Rudall, P. J., Gasson, P. E., and Gale, R. M. O., 1987. Root Identification Manual of Trees and Shrubs: A Guide to the Anatomy of Roots of Trees and Shrubs Hardy in Britain and Northern Europe. London: Chapman and Hall.Google Scholar
Daley, J., 2017. This 3,000-year-old wooden toe shows early artistry of prosthetics. Smithsonian Magazine, Smithsonian.com, accessed 2 August 2018.Google Scholar
Daly, A., 2006. The dendrochronological dating of timber crossings in West Jutland, Denmark. Journal of Wetland Archaeology 6:1948.Google Scholar
Daly, A. 2014. Fine-tuned chronology of Medieval fishweirs on the Fergus Estuary, Co. Clare, Ireland. Journal of Wetland Archaeology 14:621.Google Scholar
Daly, A., O’Sullivan, A., and Sands, R., 2014. Chronology, culture and archaeology: precision chronology of wetland structures using tree-ring studies. Journal of Wetland Archaeology 14:15.Google Scholar
Damblon, F., and Haesaerts, P., 2002. Anthracology and radiochronology of the Upper Pleistocene in the loessic areas of Eurasia. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 6571.Google Scholar
Damon, F. H., 1998. Selective anthropomorphization: trees in the northeast Kula Ring. Social Analysis 42(3):6799.Google Scholar
Darmawan, W., Nandika, D., and Kartika Sari, R. et al., 2015. Juvenile and mature wood characteristics of short and long rotation teak in Java. IAWA Journal 36(4):428442.Google Scholar
Day, A., McWilliams, P., and Dobson, N., 1994. Ordnance Survey Memoirs of Ireland, Volume 25: Parishes of County Londonderry VII, 1834–35 North-West Londonderry. Belfast: Queen’s University.Google Scholar
Dean, J. S., 2009. One hundred years of dendroarchaeology: dating, human behavior, and past climate. In Manning, S. W. and Bruce, M. J. (eds.), Tree-Rings, Kings, and Old World Archaeology and Environment: Papers Presented in Honor of Peter Ian Kuniholm. Oxford: Oxbow Books, pp. 2531.Google Scholar
Degen, B., Ward, S. E., and Lemes, M. R. et al., 2013. Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Science International: Genetics 7(1):5562.Google Scholar
Delhon, C., 2006. Palaeo-ecological reliability of pedo-anthracological assemblages. In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 924.Google Scholar
Del Tredici, P., 2013. Tree architecture definitions, Arnold Arboretum, Harvard University. www.arboretum.harvard.edu/wp-content/uploads/Tree-Architecture.pdf, accessed 21 July 2018.Google Scholar
De Micco, V., Balzano, A., Wheeler, E. A., and Baas, P., 2016a. Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. IAWA Journal 37(2):186205.Google Scholar
De Micco, V., Campelo, F., and De Luis, M. et al., 2016b. Intra-annual density fluctuations in tree rings: how, when, where, and why? IAWA Journal 37(2):232259.Google Scholar
De Micco, V., Saurer, M., Aronne, G., Tognetti, R., and Cherubini, P., 2007. Variations of wood anatomy and delta13 C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA Journal 28(1):6174.Google Scholar
De Micco, V., Zalloni, E., Balzano, A., and Battipaglia, G., 2013. Fire influence on Pinus halepensis: wood responses close and far from scar. IAWA Journal 34(4):446458.Google Scholar
De Micco, V., Zalloni, E., and Battipaglia, G. et al., 2018. Rootstock effect on tree-ring traits in grapevine under a climate change scenario. IAWA Journal 39(2):145155.CrossRefGoogle Scholar
Deng, L., and Baas, P., 1991. The wood anatomy of the Theaceae. IAWA Bulletin n.s. 12(3):333353.Google Scholar
Denne, P., and Gasson, P., 2008. Ray structure in root- and stem-wood of Larix decidua: implications for root identification and function. IAWA Journal 29(1):1723.CrossRefGoogle Scholar
Denne, P., and Turner, S, 2009. Ray structure differences between rootwood and stemwood in a range of softwood species. IAWA Journal 30(1):7180.Google Scholar
Den Outer, R. W., Van Veenendaal, W. L. H., and Versteegh, C., 1988. Determination keys for important West-European woods and tropical commercial timbers with the help of a hand-lens or a light microscope. Agricultural University Wageningen Papers 88-1. Wageningen: Drukkerij Veenman.Google Scholar
Derose, R. J., Bekker, M. F., and Kjelgren, R. et al., 2016. Dendrochronology of Utah juniper (Juniperus osteosperma (Torr.) Little). Tree-Ring Research 72(1):114.Google Scholar
Dias Leme, C. L., Cartwright, C., and Gasson, P., 2010. Anatomical changes to the wood of Mimosa ophthalmocentra and Mimosa tenuiflora when charred at different temperatures. IAWA Journal 31(3):333351.Google Scholar
Dias Leme, C. L., and Gasson, P., 2012. Anatomical comparison of original and regrowth wood from coppiced and pollarded Poincianella pyramidalis trees in the caatinga of Pernambuco, Brazil. IAWA Journal 33(1):6372.Google Scholar
Dincauze, D. F., 2000. Environmental Archaeology: Principles and Practice. Cambridge: Cambridge University Press.Google Scholar
Donaldson, L. A., and Lausberg, M. J. F., 1998. Comparison of conventional transmitted light and confocal microscopy for measuring wood cell dimensions by image analysis. IAWA Journal 19(3):321336.Google Scholar
Donaldson, L. A., and Singh, A. P., 1990. Ultrastructure of Terminalia wood from an ancient Polynesian canoe. IAWA Bulletin n.s. 11(2):195202.Google Scholar
Dong, M., Zhou, H., and Jiang, X. et al., 2017. Wood used in ancient timber architecture in Shanxi Province, China. IAWA Journal 38(2):182200.Google Scholar
Doran, G. H., ed., 2002. Multidisciplinary Investigations of an Early Archaic Florida Cemetery. Gainesville: University Press of Florida.Google Scholar
Doran, G. H. 2013. Excavating wet sites. In Menottii, F. and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 483494.Google Scholar
Drew, D. M., Allen, K., and Downes, G. M. et al., 2013. Wood properties in a long-lived conifer reveal strong climate signals where ring-width series do not. Tree Physiology 33(1):3747.Google Scholar
Dufraisse, A., 2002. Charcoal analysis in a lake dwelling site (Chalain 19, Jura, France): a sampling model for Neolithic lacustrine contexts. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 1724.Google Scholar
Dufraisse, A. 2006. Charcoal anatomy potential, wood diameter, and radial growth. In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 4759.Google Scholar
Duggins, J. B., 2019. Canoe caching at transit points: inferring Florida’s ancient navigation routes using archaeology and ethnohistory. In Wheeler, R. and Ostapkowicz, J. (eds.), Iconography and Wetsite Archaeology of Florida’s Watery Realms. Gainesville: University of Florida Press, pp. 82110.Google Scholar
Dussol, L., Elliott, M., Pereira, G., and Michelet, D., 2016. The use of firewood in ancient Maya funerary rituals: a case study from Rio Bec (Campeche, Mexico). Latin American Antiquity 27(1):5173.Google Scholar
Dute, R. R., Miller, M. E., Davis, M. A., Woods, F. M., and McLean, K. S., 2002. Effects of ambrosia beetle attack on Cercis canadensis. IAWA Journal 23(2):143160.Google Scholar
Eckholm, E., Foley, G., Barnard, G., and Timberlake, L., 1984. Fuelwood: The Energy Crisis That Won’t Go Away. London: International Institute for Environment and Development.Google Scholar
Eckstein, D., Sass, U., and Baas, P. (eds.), 1995. Growth periodicity in tropical trees. IAWA Journal 16 (4): 323442.Google Scholar
Eckstein, D., Scholz, F., and Klein, H., 1995. Wood anatomical studies of cloned spruce trees fumigated with sulphur dioxide. IAWA Journal 16(3):299309.Google Scholar
Edlin, H. L., 1969. What Wood Is That?: A Manual of Wood Identification with 40 Actual Wood Samples. London: Thames and Hudson.Google Scholar
Eilmann, B., Zweifel, R., Buchmann, N., Fonti, P., and Rigling, A., 2009. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiology 29:10111020.Google Scholar
Emrich, W., 1985. Handbook of Charcoal Making: The Traditional and Industrial Methods. Dordrecht: D. Reidel.Google Scholar
Esau, K., 1977. Anatomy of Seed Plants, 2nd ed. New York, NY: John Wiley and Sons.Google Scholar
Evans, J., 1982. Plantation Forestry in the Tropics. Oxford: Clarendon Press.Google Scholar
Evans, N. P., Bauska, T. K., and Gázquez-Sánchez, F. et al., 2018. Quantification of drought during the collapse of the classic Maya civilization. Science 361(6401):498501.Google Scholar
Evans, P. D., Mundo, I. A., and Wiemann, M. C. et al., 2017. Identification of selected CITES-protected Araucariaceae using DART TOFMS. IAWA Journal 38(2):266281.Google Scholar
Evans, R., 1997. A copy of the Downhill Harp. The Galpin Society Journal 50:119126.Google Scholar
Everett, N., 2015. The Woods of Ireland: A History, 700–1800. Dublin: Four Courts Press.Google Scholar
Evert, R. F., 2006. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd ed. New York: John Wiley.Google Scholar
Fahn, A., 1990. Plant Anatomy, 4th ed. Oxford: Butterworth-Heinemann.Google Scholar
Fahn, A., Werker, E., and Baas, P., 1986. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions. Jerusalem: The Israel Academy of Sciences and Humanities.Google Scholar
February, E. C., Stock, W. D., Bond, W. J., and Le Roux, D. J., 1995. Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and two hybrids. IAWA Journal 16(3):269276.Google Scholar
Feiss, T., Horen, H., and Brasseur, B. et al., 2017. Optimal sampling design and minimal effort for soil charcoal analyses considering the soil type and forest history. Vegetation History and Archaeobotany 26(6):627637.Google Scholar
Feist, W. C., 1990. Outdoor wood weathering and protection. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 263298.Google Scholar
Fichtler, E., and Worbes, M., 2012. Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA Journal 33(2):119140.Google Scholar
Figueiral, I., and Mosbrugger, V., 2000. A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments: achievements and limits. Paleogeography, Paleoclimatology, Paleoecology 164:397407.Google Scholar
Fioravanti, M., Di Giulio, G., and Signorini, G. et al., 2017. Non-invasive wood identification of historical musical bows. IAWA Journal 38(3):285296.Google Scholar
Fisher, D., Shirley, E., and Whalen, C. et al., 2014. X-ray computed tomography of two mammoth calf mummies. Journal of Paleontology 88(4):664675.Google Scholar
Fleetwood, Jr., W. C., 1995. Tidecraft: The Boats of South Carolina, Georgia and Northeastern Florida: 1550–1950. Tybee Island, GA: WBG Marine Press.Google Scholar
Florian, M. E., 1990. Scope and history of archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 332.Google Scholar
Flynn, J. H. Jr., and Holder, C. D., eds., 2001. A Guide to Useful Woods of the World, 2nd ed. Madison, WI: Forest Products Society.Google Scholar
Friedman, J., 1978. Wood Identification by Microscopic Examination. Heritage Record Series No. 5. Victoria: British Columbia Provincial Museum.Google Scholar
Fritts, G. J., 2005. Paleoethnobotanical methods and applications. In Mashner, H. D. G. and Chippindale, C. (eds.), Handbook of Archaeological Methods, Volume II. Oxford: AltaMira Press, pp. 773834.Google Scholar
Fritts, H. C., 2001. Tree Rings and Climate. Caldwell, NJ: The Blackburn Press.Google Scholar
Fromm, J. H., Sautter, I., and Matthies, D. et al., 2001. Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiology 127:416425.Google Scholar
Froyd, C. A., Lee, J. A., and Anderson, A. J. et al., 2010. Historic fuel wood use in the Galápagos Islands: identification of charred remains. Vegetation History and Archaeobotany 19(3):207217.Google Scholar
Fujii, H., 2004. Wooden boards in prehistoric Japan: wood species and splitting techniques. Journal of Wetland Archaeology 4:117123.Google Scholar
Gaffney, V., Fitch, S., and Smith, D., 2009. Europe’s Lost World: The Rediscovery of Doggerland. CBA Research Report Series No. 160. York: Council for British Archaeology.Google Scholar
Gaffney, V. L., Thomson, K., and Fitch, S., eds., 2007. Mapping Doggerland: The Mesolithic Landscapes of the Southern North Sea. Institute of Archaeology and Antiquity, University of Birmingham. Oxford: Archaeopress.Google Scholar
Gajewski, K., Kriesche, B., Chaput, M. A., Kulik, R., and Schmidt, V., 2019. Human-vegetation interactions during the Holocene in North America. Vegetation History and Archaeobotany 28(6):635647.Google Scholar
Gale, R., Gasson, P., Hepper, N., and Killen, G., 2000. Wood. In Nicholson, P. T. and Shaw, I. (eds.), Ancient Egyptian Materials and Technology. Cambridge: Cambridge University Press, pp. 334371.Google Scholar
Gallagher, D. E., 2014. Formation processes of the macrobotanical record. In Marston, J. M., Guedes, J. D., and Warinner, C. (eds.), Method and Theory in Paleoethnobotany. Boulder: University Press of Colorado, pp. 1934.Google Scholar
Garland, N. A., Grissino-Mayer, H. D., Deagan, K., Harley, G. L., Waters, G. 2012. Dendrochronological dating of wood from the Fountain of Youth Park Archaeological Site (8SJ31), St. Augustine, Florida, USA. Tree-Ring Research 68(1):6978.Google Scholar
Gärtner, H., and Heinrich, I., 2009. The formation of traumatic rows of resin ducts in Larix decidua and Picea abies (Pinaceae) as a result of wounding experiments in the dormant season. IAWA Journal 30(2):199215.CrossRefGoogle Scholar
Gärtner, H., and Heinrich, I., 2013. Dendrogeomorhology. In Elias, S. A. (ed.), The Encyclopedia of Quaternary Sciences Volume 2. Amsterdam: Elsevier, pp. 91203.Google Scholar
Gasson, P., 1987. Some implications of anatomical variations in the wood of pedunculate oak (Quercus robur L.), including comparisons with common beech (Fagus sylvatica L.). IAWA Bulletin n.s. 8(2):149166.CrossRefGoogle Scholar
Gasson, P. 2011. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA Journal 32(2):137154.Google Scholar
Gasson, P., Cartwright, C., and Dias Leme, C. L., 2017. Anatomical changes to the wood of Croton sonderianus (Euphorbiaceae) when charred at different temperatures. IAWA Journal 38(1):117123.Google Scholar
Gasson, P. E., and Cutler, D. F., 1990. Root anatomy of 17 genera growing in the British Isles. IAWA Bulletin n.s. 11(1):346.Google Scholar
Gaudin, L., 2002. Anthracology and landscape planning. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 229233.Google Scholar
Gerards, T., Damblon, F., Wauthoz, B., and Gerrienne, P., 2007. Comparison of cross-field pitting in fresh, dried, and charcoalified softwoods. IAWA Journal 28(1):4960.Google Scholar
Ghislain, B., Engel, J., and Clair, B., 2019. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA Journal 40(4):765784.Google Scholar
Giagli, K., Gričar, J., Vavrčik, H., Menšik, L., and Gryc, V., 2016. The effects of droughts on wood formation in Fagus sylvatica during two contrasting years. IAWA Journal 37(2):332348.Google Scholar
Gill, A. M., 1971. Endogenous control of growth-ring development in Avicennia. Forest Science 17:462465.Google Scholar
Girard, V., Philippe, M., Bamford, M., Gomez, B., and Ferry, S., 2012. Charcoalified wood from the Cenomanian of Gard (southern France): an insight into early angiosperm palaeoecology. Revista Española de Paleontología 27(1):2944.Google Scholar
Glass, S. V., and Zelinka, S. L., 2011. Moisture relations and physical properties of wood. In Ross, R. J. (ed.), Wood Handbook: Wood as an Engineering Material, 2010 Edition. Reprinted from USDA Forest Products Laboratory General Technical Report FPL-GTR-190. Madison, WI: Forest Products Society, 4-1–4-19.Google Scholar
Glob, P. V., 1969. The Bog Bodies: Iron-Age Man Preserved. Ithaca, NY: Cornell University Press.Google Scholar
Goldbaum, K., 2016. What is the oldest tree in the world? Live Science, www.livescience.com/29152-oldest-tree-in-the-world, accessed 14 August 2018.Google Scholar
Goldberg, P., Miller, C. E., and Schiegl, S. et al., 2009. Bedding, hearths and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences 1(2):95122.Google Scholar
Goldsack, R., 2007. Aromatic woods: their products and uses. In Flynn, J. H., Jr. (ed.), A Guide to More Useful Woods of the World. Madison, WI: Forest Products Society, pp. 219261.Google Scholar
Goldstein, D. J., 2011. Forests and Fires: A Paleoethnobotanical Assessment of Craft Production Sustainability on the Peruvian North Coast (950–1050 CE), BAR International Series No. 2318. Oxford: Archaeopress.Google Scholar
Gonҫalves, T. A. P., Marcati, C. R., and Scheel-Ybert, R., 2012. The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum, and Pouteria torta from the Brazilian cerrado. IAWA Journal 33(1):7390.Google Scholar
Goren-Inbar, N., Werker, E., and Feibel, C. S., 2002. The Acheulian site of Gesher Benot Ya’aqov. Volume 1, The Wood Assemblage. Oxford: Oxbow Books.Google Scholar
Graham, R. W., Belmecheri, S., and Choy, K. et al., 2016. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. PNAS 113(33): 93109314. www.pnas.org/cgi/doi/10.1073/pnas.1604903113.Google Scholar
Grattan, D., Bilz, M., Grant, T., and Logan, J., 2006. Outcome determines treatment: an approach to the treatment of waterlogged wood. Journal of Wetland Archaeology 6:4963.Google Scholar
Gregory, D., and Jensen, P., 2006. The importance of analyzing waterlogged wooden artefacts and environmental conditions when considering their in situ preservation. Journal of Wetland Archaeology 6:6581.Google Scholar
Greguss, P., 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akadémiai Kaidaó.Google Scholar
Grimm, E., 2008. Neotoma: An Ecosystem Database for the Pliocene, Pleistocene, and Holocene. Illinois State Museum Scientific Papers E Series 1, Springfield.Google Scholar
Grissino-Mayer, H. D., and Butler, D. R., 1993. Effects of climate on growth of shortleaf pine (Pinus echinata Mill.) in northern Georgia: a dendroclimatic study. Southeastern Geographer 33(1),6581.CrossRefGoogle Scholar
Guo, J., Xiao, L., and Han, L. et al., 2019. Deterioration of the cell wall in waterlogged wooden archaeological artifacts, 2400 years old. IAWA Journal 40(4):820844.Google Scholar
Guyette, R. P., and Stambaugh, M., 2003. The age and density of ancient and modern oak wood in streams and sediments. IAWA Journal 24(4):345353.Google Scholar
Haag, V., Koch, G., and Richter, H. G. et al., 2019. Wood anatomical and topological analyses to characterize juvenile and adult wood of lesser-known species from Central America (Mexico). IAWA Journal 40(4):785803.Google Scholar
Hacke, U. (ed.), 2015. Functional and Ecological Xylem Anatomy. Heidelberg: Springer International Publishing.Google Scholar
Hageman, J. B., and Goldstein, D. J., 2009. An integrated assessment of archaeobotanical recovery methods in the neotropical rainforest of northern Belize: flotation and dry screening. Journal of Archaeological Science 36(12):28412852.Google Scholar
Håfors, B., 1990. The role of the Wasa in the development of the polyethylene glycol preservation method. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 195216.Google Scholar
Haney, J. M., 2019. The Role of Forest Resources in the Development of a Non-egalitarian Fisher-Gatherer-Hunter Society in Southwest Florida. PhD dissertation, Department of Anthropology and Human Dimensions of Natural Resources and the Environment Program, The Pennsylvania State University, University Park, Pennsylvania.Google Scholar
Hanssen, F., Wischnewski, N., Moreth, U., and Magel, E. A., 2011. Molecular identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata wood using taxon-specific RDNA-ITS primers. IAWA Journal 32(2):273284.Google Scholar
Harley, G. L., Grissino-Mayer, H. D., Franklin, J. A., Anderson, C. and Kosë, N., 2012. Cambial activity of Pinus elliottii var. densa reveals influence of seasonal insolation on growth dynamics in the Florida Keys. Trees-Structure and Function 26(5):14491459.Google Scholar
Hather, J. G., 1994. Introduction. In Hather, J. G. (ed.), Tropical Archaeobotany: Applications and New Developments. New York: Routledge, pp. 18.Google Scholar
Hather, J. G. 2000. Identification of Northern European Woods: A Guide for Archaeologists and Conservators. London: UCL Institute of Archaeology Publications.Google Scholar
Hauck, D. K., and Ünlü, K., 2009. Dendrochemistry of Pinus sylvestris trees from a Turkish forest. In Manning, S. W. and Bruce, M. J. (eds.), Tree-rings, Kings, and Old World Archaeology and Environment: Papers Presented in Honor of Peter Ian Kuniholm. Oxford: Oxbow Books, pp. 111118.Google Scholar
Haygreen, J. G. and Bowyer, J. L., 1996. Forest Products and Wood Science: An Introduction, 3rd ed. Ames: Iowa State University Press.Google Scholar
Hazenberg, G., and Yang, K. C., 1991. Sapwood/heartwood width relationships with tree age in balsam fir. IAWA Bulletin n.s. 12(1):9599.Google Scholar
Heckenberger, M. J., Russell, J. C., Toney, J. R., and Schmidt, M. J., 2007. The legacy of cultural landscapes in the Brazilian Amazon: implications for biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1478):197208.Google Scholar
Hedges, J. I., 1990. The chemistry of archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 111140.Google Scholar
Heinz, C., 2002. Evidence from charcoal analysis for palaeoenvironmental change during the Late Glacial and Post-Glacial in the central Pyrenees (France). In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 95101.Google Scholar
Helmling, S., Olbrich, A., and Heinz., I., and Koch, G., 2018. Atlas of vessel elements: identification of Asian timbers. IAWA Journal 39(3):249352.Google Scholar
Henderson, J. P., and Grissino-Mayer, H. D., 2009. Climate-tree growth relationships of longleaf pine (Pinus palustris Mill.) in the Southeastern Coastal Plain, USA. Dendrochronologia 27(1):3143.Google Scholar
Henderson, J., and Sands, R., 2013. Irish and Scottish crannogs. In Menottii, F. and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 269282.Google Scholar
Hermanson, J. C., and Wiedenhoeft, A. C., 2011. A brief review of machine vision in the context of automated wood identification systems. IAWA Journal 32(2):233250.Google Scholar
Hess, R. W., 1946. Identification of New World timbers, Part III, Annonaceae. Tropical Woods 88:1330.Google Scholar
Hess, R. W. 1948. Keys to American woods (continued), XXI: parenchyma in numerous concentric bands. Tropical Woods 94:2952.Google Scholar
Higham, C. F. W., 2013. The archaeology of wetlands: a personal journey. In Menottii, F. and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 895902.Google Scholar
Hillam, J., Morgan, R. A., and Tyers, I., 1987. Sapwood estimates and the dating of short ring series. In Ward, R. G. W. (ed.), Applications of Tree-Ring Studies: Current Research in Dendrochronology and Related Subjects. BAR International Series 333, Oxford: BAR Publishing, pp. 165185.Google Scholar
Hoadley, B. R., 1990. Identifying Wood: Accurate Results with Simple Tools. Newtown, CT: Taunton Press.Google Scholar
Hoadley, B. R. 2000. Understanding Wood: A Craftsman’s Guide to Wood Technology. Newtown, CT: Taunton Press.Google Scholar
Hoffmann, P., and Jones, M. A., 1990. Structure and degradation process for waterlogged archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 3565.Google Scholar
Höhn, A., and Neumann, K., 2018. Charcoal identification in a species-rich environment: the example of Dibamba, Cameroon. IAWA Journal 39(1):87113.Google Scholar
Hollesen, J., Callanan, M., and Dawson, T. et al., 2018. Climate change and the deteriorating archaeological and environmental archives of the Arctic. Antiquity 92(363):573586.Google Scholar
Hooke, R., 1665. Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon. London: Martyn and Allestry, Printers to the Royal Society (1995, facsimile special edition, The Classics of Science Library, New York, NY).Google Scholar
Hough, R. B., 2002. The Wood Book: Reprint of The American Woods (1888–1913, 1928) (from the original editions at the Royal Botanic Gardens, Kew, London). Köln: Taschen.Google Scholar
Hosch, S., and Zibulski, P., 2003. The influence of inconsistent wet-sieving procedures on macroremains concentration in waterlogged sediments. Journal of Archaeological Science 30:849857.Google Scholar
Hsu, L. C. Y., Walker, J. C.F., Butterfield, B. G., and Jackson, S. L., 2006. Compression wood does not form in the roots of Pinus radiata. IAWA Journal 27(1):4554.Google Scholar
Hubau, W., Van den Bulcke, J., and Kitin, P. et al., 2013. Complementary imaging techniques for charcoal examination and identification. IAWA Journal 34(2):147168.Google Scholar
IAWA Committee, 1964. Multilingual glossary of terms used in wood anatomy, IAWA Committee on Nomenclature. International Association of Wood Anatomists, Verlagsanstalt Buchdruckerei Konkordia Winterthur.Google Scholar
IAWA Committee 1981. Standard list of characters suitable for computerized hardwood identification. IAWA Bulletin n.s. 2:99110.Google Scholar
IAWA Committee 1989. IAWA list of microscopic features for hardwood identification, E. A. Wheeler, P. Baas, and P. E. Gasson (eds.). IAWA Bulletin n.s. 19(3):219332.Google Scholar
IAWA Committee 2004. IAWA list of microscopic features for softwood identification, H. D. Richter, D. Grosser, I. Heinz, and P. E. Gasson (eds.). IAWA Journal 25(1):170.Google Scholar
IAWA Committee 2016. IAWA list of microscopic bark features. IAWA Journal 37:517615.Google Scholar
Ilic, J., 1991. CSIRO Atlas of Hardwoods. East Melbourne: Crawford House Press in association with the CSIRO.Google Scholar
Ilic, J. 1993. Computer aided wood identification using CSIROID. IAWA Journal 14(4):333340.Google Scholar
InsideWood 2004 onwards. Published on the Internet. http://insidewood.lib.ncsu.edu/search, accessed 17 March 2019.Google Scholar
International Dendrology Society, 2020. https://treesandshrubsonline.org/articles/robinia/, accessed 18 July 2020.Google Scholar
Jacoby, G. C., Jr., 1989. Overview of tree-ring analysis in tropical regions. IAWA Bulletin n.s. 10(2):99108.Google Scholar
Jacoby, G. C., Jr., and D’Arrigo, R., 1989. Reconstructed Northern Hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Climatic Change 14:3959.Google Scholar
Jacoby, G. C., Jr., Sheppard, P. R., and Sieh, K. E., 1988. Regular recurrence of large earthquakes along the San Andreas fault: evidence from trees. Science 241:196199.Google Scholar
Jagels, R., 1986. Acid fog, ozone, and low elevation spruce decline. IAWA Bulletin n.s. 7(4):299307.Google Scholar
Jane, F. W., 1970. The Structure of Wood, 2nd ed. London: A. and C. Black.Google Scholar
Janzen, D. H., 1984. Dispersal of small seeds by big herbivores: foliage is the fruit. American Naturalist 123:338353.Google Scholar
Jespersen, K., 1984. Extended storage of waterlogged wood in nature. In Ramiere, R. and Colardelle, M. (eds.), Waterlogged Wood: Study and Conservation, Proceedings of the 2nd ICOM Waterlogged Wood Working Group Conference, Grenoble. Grenoble: Centre D’etude et de Traitement des Bois Gorges D’eau, pp. 3954.Google Scholar
Jiao, L., Liu, X., Jiang, X., and Yin, Y., 2015. Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification. Holzforschung 69(8):925931.Google Scholar
Johns, D. A., 2013. Post-excavation treatment methods for waterlogged organic archaeological materials: the last twenty years. In Menottii, F. and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 665684.Google Scholar
Joly, D., Santoro, C. M., and Gayo, E. M. et al., 2017. Late Pleistocene fuel management and human colonization of the Atacama Desert, northern Chile. Latin American Antiquity 28(1):144160.Google Scholar
Jones, P. D., Schimleck, L. R., So, C., Clark, A., III, and Daniels, R. F., 2007. High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy. IAWA Journal 28(4):473484.Google Scholar
Jono, V., Maselli Locosselli, G., and Ceccantini, G., 2013. The influence of tree size and microenvironmental changes on the wood anatomy of Roupala rhombifolia. IAWA Journal 34(1):88106.Google Scholar
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., and Donoghue, M. J., 2002. Plant Systematics: A Phylogenetic Approach, 2nd ed. Sunderland, MA: Sinauer Associates.Google Scholar
Kadane, J. B., 1988. Possible statistical contributions to paleoethnobotany. In Popper, V. S. and Hastorf, C. A. (eds.), Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains. Chicago: The University of Chicago Press, pp. 206214.Google Scholar
Kamala, F. D., Sakagami, H., Oda, K., and Matsumura, J., 2013. Wood density and growth ring structure of Pinus patula planted in Malawi, Africa. IAWA Journal 34(1):6170.Google Scholar
Kelly, R., 2013. The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways, 2nd ed. Washington, DC: Smithsonian Institution Press.Google Scholar
Kennett, D. J., Hajdas, I., and Culleton, B. J. et al., 2013. Correlating the ancient Maya and modern European calendars with high-precision AMS 14 C dating. Nature Scientific Reports 3:1597/DOI:10.1038/srep01597.Google Scholar
Kim, M., and Yun, H., 2011. The availability and use of wood resources at the multi-period settlement site of Pyeonggeo-dong, Jinju, South Korea. Vegetation History and Archaeobotany 20:6777.Google Scholar
Kim, Y. S., and Singh, A. P., 2000. Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA Journal 21(2):135155.Google Scholar
King, F., and Dotte-Sarout, E., 2019. Wood charcoal analysis in tropical rainforest: a pilot study identifying firewood used at toxic nut processing sites in northeast Queensland, Australia. Vegetation History and Archaeobotany 28(2):163185.Google Scholar
Kintisch, E., 2016. Arctic shipworm discovery alarms archaeologists. Science 351(6276):901.Google Scholar
Kistler, L., 2012. Ancient DNA extraction from plants. In Shapiro, B., and Hofreiter, M. (eds.), Ancient DNA: Methods in Molecular Biology (Methods and Protocols), vol. 840. New York: Humana Press, pp. 7179.CrossRefGoogle Scholar
Kistler, L., Montenegro, A., and Smith, B. D. et al., 2014. African origins and multi-regional domestication of bottle gourds in the Americas, PNAS 111(8):29372941.Google Scholar
Kitin, P., Sano, Y., and Funada, R., 2003. Three-dimensional imaging and analysis of differentiating secondary xylem by confocal microscopy. IAWA Journal 24(3):211222.Google Scholar
Kline, M., 2001. Robinia pseudoacacia, black locust. In Flynn, J. H., Jr., and Holder, C. D. (eds.), A Guide to the Useful Woods of the World, 2nd ed. Madison, WI: Forest Products Society, pp. 474475.Google Scholar
Koch, G., Richter, H.-G., and Schmitt, U., 2011. Design and application of CITESwoodID: computer-aided identification and description of CITES-protected timbers. IAWA Journal 32(2):213220.Google Scholar
Koch, G. W., Sillett, S. C., Jennings, G. M., and Davis, S. D., 2004. The limits to tree height. Nature 428:851854.Google Scholar
Koek-Noorman, J., and ter Welle, B. J. H, 1976. The anatomy of branch abscission layers in Perebea mollis and Naucleopsis guianensis (Castilleae, Moraceae). In Baas, P., Bolton, A. J., and Catling, D. M. (eds.), Wood Structure in Biological and Technological Research, Leiden Botanical Series No. 3. Leiden: Leiden University Press, pp. 196203.Google Scholar
Koeppen, R. C., 1972. Charcoal identification. USDA Forest Service, Forest Products Laboratory, US Forest Service Research Note FPL-0217.Google Scholar
Koga, S., Oda, K., Tsutsumi, J., and Fujimoto, T., 1997. Effect of thinning on the wood structure in annual growth rings of Japanese larch (Larix leptolepis). IAWA Journal 18(3):281290.Google Scholar
Kolianos, P. E., 2019. Wood preservation dilemmas of Florida’s prehistoric saltwater sites: Key Marco and Weedon Island. In Wheeler, R. and Ostapkowicz, J. (eds.), Iconography and Wetsite Archaeology of Florida’s Watery Realms. Gainesville: University of Florida Press, pp. 6781.Google Scholar
Koot, C. W. and Bakels, C. C., 2002. Wood resources and their exploitation during the Iron Age occupation of the fens of Midden-Delfland, the Netherlands. Journal of Wetland Archaeology 2:123.Google Scholar
Kort, I. de, and Baas, P., 1997. Ring width patterns of Douglas fir in relation to crown vitality and age. IAWA Journal 18(1):5367.CrossRefGoogle Scholar
Kort, I. de, Loeffen, V., and Baas, P., 1991. Ring width, density and wood anatomy of Douglas fir with different crown vitality. IAWA Bulletin n.s. 12(4):453465.Google Scholar
Kretschmann, D. E., 2011. Commercial lumber, round timbers, and ties. In Ross, R. J. (ed.), Wood Handbook: Wood as an Engineering Material, 2010 Edition. Reprinted from USDA Forest Products Laboratory General Technical Report FPL-GTR-190. Madison, WI: Forest Products Society.Google Scholar
Kukkola, E., Saranpää, P., and Fagerstedt, K., 2008. Juvenile and compression wood cell wall layers differ in lignin structure in Norway spruce and Scots pine. IAWA Bulletin 29(1):4754.Google Scholar
Langlais, D., and Bégin, Y., 1993. The effects of recent floods and geomorphic processes on red ash populations, Upper St. Lawrence Estuary, Quebec. Estuarine Coastal Shelf Science 37:525538.Google Scholar
Lee, R., 2013. The Dobe Ju/’hoansi, 4th ed. Belmont, CA: Wadsworth Publishing.Google Scholar
Leme, C. L. D., and Gasson, P., 2012. Anatomical comparison of original and regrowth wood from coppiced and pollarded Poincianella pyramidalis trees in the caatinga of Pernambuco, Brazil. IAWA Journal 33(1): 6372.CrossRefGoogle Scholar
Leney, L., and Casteel, R. W., 1975. Simplified procedure for examining charcoal specimens for identification. Journal of Archaeological Science 2:153159.Google Scholar
Lennox, S., Bamford, M., and Wadley, L., 2017. Middle Stone Age wood use 58,000 years ago in KwaZulu-Natal: charcoal analysis from two Sibudu occupation layers. Southern African Humanities 30:247286.Google Scholar
Lev-Yadun, S., 1991. Terminology used in bark anatomy: additions and comments. IAWA Bulletin n.s. 12(2):207209.Google Scholar
Lev-Yadun, S. 2001. Wound effects arrest wave phenomena in the secondary xylem of Rhamnus alaternus (Rhamnaceae). IAWA Journal 22(3):295300.Google Scholar
Lev-Yadun, S. 2017. Periderm tubes: an addition to the List of microscopic bark features. IAWA Journal 38(4):571572.Google Scholar
Levy, J. F., 1963. The condition of “wood” from archaeological sites. In Brothwell, D. and Higgs, E. (eds.), Science in Archaeology. Bristol: Thames and Hudson, pp. 159161.Google Scholar
Lewis, T. E. (ed.), 1995. Tree Rings as Indicators of Ecosystem Health. Boca Raton, FL: CRC Press.Google Scholar
Li, H., An, C., and Dong, W. et al., 2017. Woodland vegetation composition and prehistoric human fuel collection strategy at the Shannashuzha site, Gansu Province, Northwest China, during the middle Holocene. Vegetation History and Archaeobotany 26(2):213221.Google Scholar
Lim, D. O., and Soh, W. Y., 1997. Cambial development and tracheid length of dwarf pines (Pinus densiflora and P. thunbergh). IAWA Journal 18(3):301310.Google Scholar
Liphschitz, N., and Mendel, Z., 1987. Histological studies of Pinus halepensis stem xylem affected by Matsucoccus josephi (Homoptera: Margarodidae). IAWA Bulletin n.s. 8(4):369376.Google Scholar
Little, E. L., Jr., and Wadsworth, F. H., 1964. Common Trees of Puerto Rico and the Virgin Islands. USDA, Forest Service, Agriculture Handbook No. 249. Washington, DC: US Government Printing Office.Google Scholar
Liu, J., Dietz, T., and Carpenter, S. R. et al., 2007. Complexity of coupled human and natural systems. Science 317:15131516.Google Scholar
Lombardo, U., Szabo, K., Capriles, J. M., May, J. H., and Amelung, W., 2013. Early and Middle Holocene hunter-gatherer occupations in Western Amazonia: the hidden shell middens. PLoS ONE 8(8): e72746. doi:10.1371/journal.pone.0072746.CrossRefGoogle ScholarPubMed
Losos, J. B., and Ricklefs, R. E., 2010. The Theory of Island Biogeography Revisited. Princeton, NJ: Princeton University Press.Google Scholar
Lowe, A. J., and Cross, H. B., 2011. The application of DNA methods to timber tracking and origin verification. IAWA Journal 32(2):251262.Google Scholar
Lucas, A., 1934. Wood working in ancient Egypt. Empire Forestry Journal 13(2):213218.Google Scholar
Ludemann, T., 2006. Anthracological analysis of recent charcoal-burning in the Black Forest, SW Germany. In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 6170.Google Scholar
Ludemann, T., and Nelle, O., 2017. Anthracology: local to global significance of charcoal science. Quaternary International 457:15.Google Scholar
Ludwig, J. A., and Reynolds, J. F., 1988. Statistical Ecology: A Primer on Methods and Computing. New York: John Wiley.Google Scholar
Luo, M., Hill, R. D., and Mohapatra, S. S., 1993. Role of abscisic acid in plant responses to the environment. In Gresshoff, P. M. (ed.), Plant Responses to the Environment. Boca Raton, FL: CRC Press, pp. 147165.Google Scholar
Lyman, R. L., 2008. Quantitative Paleozoology. Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Lynch, A. H., and Gasson, P. E., 2010. Index Xylariorum 4.1. Available at IAWA-website.org, accessed 14 January 2019.Google Scholar
Lyon, E. A., 1996. A New Deal for Southeastern Archaeology. Tuscaloosa: University of Alabama Press.Google Scholar
MacArthur, R., and Wilson, E. O., 1967. The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
MacDonald, G. F., 2005. When will wet sites become mainstream? Journal of Wetland Archaeology 5:155158.Google Scholar
Mackenthun, G. L., 2015. The world’s oldest living tree discovered in Sweden? A critical review. New Journal of Botany 5(3): 200204, DOI: 10.1080/20423489.2015.1123967.Google Scholar
Madrid, E. N., Armitage, A. R., and Lopez-Portillo, J., 2014. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico. Frontiers in Plant Science 5:19.Google Scholar
Malan, J. W., and van Wyk, A. E., 1993. Bark structure and preferential bark utilization by the African elephant. IAWA Journal 14(2):173185.Google Scholar
Manning, S., 1996. Harvesting hackmatack knees. The Woodenboat 132:5863.Google Scholar
Manning, S. W., and Bruce, M. J. (eds.), 2009. Tree-Rings, Kings, and Old World Archaeology and Environment: Papers Presented in Honor of Peter Ian Kuniholm. Oxford: Oxbow Books.Google Scholar
Marguerie, D., and Hunot, J., 2007. Charcoal analysis and dendrology: data from archaeological sites in northwestern France. Journal of Archaeological Science 34:14171433.Google Scholar
Mariaux, A., 1995. Foreword: Growth periodicity in tropical trees. IAWA Journal 16(4):327328.Google Scholar
Marquardt, W. H., 1992. Shell artifacts from the Caloosahatchee area. In Marquardt, W. H. (ed.), Culture and Environment in the Domain of the Calusa. Gainesville: University of Florida, Institute of Archaeology and Paleoenvironmental Studies, Monograph 1, pp. 191227.Google Scholar
Marquardt, W. H., and Walker, K. J., 2013. The Pineland site complex: an environmental and cultural history. In Marquardt, W. H. and Walker, K. J. (eds.), The Archaeology of Pineland: A Coastal Southwest Florida Site Complex, AD 50–1710. Gainesville, University of Florida Institute of Archaeology and Paleoenvironmental Studies, Monograph 4, pp. 793907.Google Scholar
Marston, J. M., 2009. Modeling wood acquisition strategies from archaeological charcoal remains. Journal of Archaeological Science 36(10):21922200.Google Scholar
Maslin, S. P., 2018. Anglo-Saxon economy and ecology by a downland stream: a waterlogged sequence from the Anglo-Saxon Royal Settlement at Lyminge, Kent. Environmental Archaeology 23(2):137151.Google Scholar
Matsuda, T., 1985. On reproducing the shape of the tissues of the dried and shrunk waterlogged wood for the identification of its species. In Ramière, R. and Colardelle, M. (eds.), Waterlogged Wood: Study and Conservation, Proceedings of the 2nd ICOM Waterlogged Wood Working Group Conference, Grenoble. Grenoble: Centre D’etude et de Traitement des Bois Gorges D’eau, pp. 5562.Google Scholar
Mayr, E., 1981. Biological classification: toward a synthesis of opposing methodologies. Science 214:510516.Google Scholar
McCafferty, P., and Baillie, M., 2005. The Celtic Gods: Comets in Irish Mythology. Stroud: Tempus Publishing.Google Scholar
McGinnes, E. A., Jr., Kandeel, S. A., and Szopa, P. S., 1971. Some structural changes observed in the transformation of wood into charcoal. Wood and Fiber 3:7783.Google Scholar
McParland, L. C., Collinson, M. E., and Scott, A. C. et al., 2007. Ferns and fires: experimental charring of ferns compared to wood and implications for palaeobiology, palaeoecology, coal petrology, and isotope geochemistry. Palaios 22:528538.Google Scholar
McParland, L. C., Collinson, M. E., Scott, A. C., and Campbell, G., 2009a. The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeological Anthropological Science 1:249261.Google Scholar
McParland, L. C., Hazell, Z., Campbell, G., Collinson, M. E., and Scott, A. C., 2009b. How the Romans got themselves into hot water: temperatures and fuel types used in firing a hypocaust. Environmental Archaeology 14(2):176183.Google Scholar
McParland, L. C., Collinson, M. E., Scott, A. C., Campbell, G., and Veal, R., 2010. Is vitrification in charcoal a result of high temperature burning of wood? Journal of Archaeological Science 37:2697–2687.Google Scholar
Mead, J. I., and Agenbroad, L. D., 1989. Pleistocene dung and the extinct herbivores of the Colorado Plateau, southwestern USA. Cranium 6(1):2944.Google Scholar
Meier, E., 2008–2018. The Wood Database. Available at www.wood-database.com/about/, accessed 9 July 2018.Google Scholar
Melo Júnior, J. C. F, and Torres Boeger, M. R., 2015. The use of wood in cultural objects in 19th century southern Brazil. IAWA Journal 36(1):98116.Google Scholar
Menotti, F., and O’Sullivan, A. (eds.), 2013. The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press.Google Scholar
Mergen, F. and Vincent, J. R., eds., 1987. Natural Management of Tropical Moist Forests: Silvicultural and Management Prospects of Sustained Utilization. New Haven, CT: Yale University School of Forestry and Environmental Studies.Google Scholar
Metcalfe, C. R., 1954. An anatomist’s views on angiosperm classification. Kew Bulletin 9:427440.Google Scholar
Metcalfe, C. R. 1983a. Anomalous structure. In Metcalfe, C. R. and Chalk, L., Anatomy of the Dicotyledons, 2nd ed., Volume II: Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press, pp. 5263.Google Scholar
Metcalfe, C. R. 1983b. Secreted mineral substances: crystals. In Metcalfe, C. R. and Chalk, L., Anatomy of the Dicotyledons, 2nd ed., Volume II: Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press, pp. 8291.Google Scholar
Metcalfe, C. R., and Chalk, L., 1983. Anatomy of the Dicotyledons, 2nd ed., Volume II: Wood Structure and Conclusion of the General Introduction. Oxford: Clarendon Press.Google Scholar
Miejac, E., 2002. Adaptation of colonists to Canadian woods extracts: the examples of housebuilding, shipbuilding, and heating wood. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 279284.Google Scholar
Mighall, T., Timpany, S., and Wheeler, J. et al., 2018. Vegetation changes and woodland management associated with a prehistoric to Medieval burnt mound complex at Ballygawley, Northern Ireland. Environmental Archaeology 23(3):267285.Google Scholar
Miles, P. D., and Smith, W. B., 2009. Specific gravity and other properties of wood and bark for 156 tree species found in North America. Northern Research Station, Research Note NRS-38. Newtown Square, PA: US Forest Service.Google Scholar
Miller, N. F., 1988. Ratios in paleoethnobotanical analysis. In Popper, V. S. and Hastorf, C. A. (eds.), Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains. Chicago, IL: The University of Chicago Press, pp. 7285.Google Scholar
Miller, R. B., 1986. A response to Wheeler and Pearson’s critical review of the IAWA Standard List of Characters. IAWA Bulletin n.s. 7(3):255262.Google Scholar
Miller, R. B. 1990. Comparison of the 1981 Standard List and the 1989 IAWA List for Hardwood Identification. IAWA Bulletin n.s. 11(2):167172.Google Scholar
Miller, R. B. 2007. Fluorescent woods of the world. In Flynn, J. H., Jr. (ed.), A Guide to More Useful Woods of the World. Madison, WI: Forest Products Society, pp. 271305.Google Scholar
Milner, N., Lane, P., Taylor, B., Conneller, C., and Schadla-Hall, T., 2011. Star Carr in a postglacial lakescape: 60 years of research. Journal of Wetland Archaeology 11:119.Google Scholar
Minckler, L. S., 1980. Woodland Ecology: Environmental Forestry for the Small Owner, 2nd ed. Syracuse, NY: Syracuse University Press.Google Scholar
Mitsch, W. J., and Gosselink, J. G., 2007. Wetlands. New York: John Wiley.Google Scholar
Mobley, C. M., and Lewis, M., 2009. Tree-ring analysis of traditional native bark-stripping at Ship Island, Southeast Alaska, USA. Vegetation History and Archaeobotany 18(3):261268.Google Scholar
Montaῄez, S. A., 2005. Archaeobotánica en la Amazonía Columbiana: Un Modelo Etnográfico para el Análisis de Maderas Carbonizadas. Bogota: Fundación de Investigaciones Arqueológicas Nacionales.Google Scholar
Mooney, D. E., 2018. Does the “marine signature” of driftwood persist in the archaeological record? An experimental case study from Iceland. Environmental Archaeology 23(3):217227.Google Scholar
Moore, D. D., 2001. Blackbeard’s Queen Anne’s Revenge: archaeological interpretation and research focused on the hull remains and ship-related accoutrements associated with Site 31-CR-314. Tributaries 11:. 3947.Google Scholar
Morgan, R., 1975. The selection and sampling of timber from archaeological sites for identification and tree-ring analysis. Journal of Archaeological Science 2:221230.Google Scholar
Morgan, R. 1979. Tree-ring studies in the Somerset Levels: the Drove Site of the Sweet Track. In Coles, J. M. (ed.), Somerset Levels Papers, Somerset Levels Project, No. 5. Hertford: Stephen Austin, pp. 6575.Google Scholar
Morgan, R. 1988. Tree-ring studies of wood used in Neolithic and Bronze Age trackways from the Somerset Levels. BAR British Series 184. Oxford: British Archaeological Reports.Google Scholar
Morgan, R. 1989. Tree-ring studies in the Somerset Levels: fifteen years of studying trackway wood. In Coles, J. M. (ed.), Somerset Levels Papers, Somerset Levels Project, No. 15. Hertford: Stephen Austin, pp. 6263.Google Scholar
Morris, H., and Jansen, S., 2016. Secondary xylem parenchyma: from classical terminology to functional traits (opinion paper). IAWA Journal 37(1):115.Google Scholar
Mustoe, G. E., 2016. Density and loss on ignition as indicators of the fossilization of silicified wood. IAWA Journal 37(1):98111.Google Scholar
Myers, R. L., 1990. Scrub and High Pine. In Myers, R. L. and Ewel, J. J. (eds.), Ecosystems of Florida. Orlando: University of Central Florida Press, pp. 150193.Google Scholar
Nawawi, D. S., Syafii, W., Akiyama, T., and Matsumoto, Y., 2016. Characteristics of guaiacyl-syringyl lignin in reaction wood in the gymnosperm Gnetum gnemon L.Holzforschung 70(7):593602.Google Scholar
Neotoma Paleoecology Database, www.neotomadb.org/about/, accessed 28 May 2019.Google Scholar
Newsom, L. A., 1993. Plants and people: cultural, biological, and ecological responses to wood exploitation. In Scarry, C. M. (ed.), Foraging and Farming in the Eastern Woodlands. Gainesville: University Presses of Florida, pp. 115137.Google Scholar
Newsom, L. A. 2002. The paleoethnobotany of the mortuary pond. In Doran, G. (ed.), Windover: Multidisciplinary Investigations of an Early Archaic Florida Cemetery. Gainesville: University Press of Florida, pp. 191210.Google Scholar
Newsom, L. A. 2006. Paleoenvironmental aspects of the macrophytic plant assemblage from Page-Ladson. In Webb, S. D. (ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River. New York: Plenum Press, pp. 181211.Google Scholar
Newsom, L. A. 2010. Paleoethnobotanical research at Tibes. In Curet, A. (ed.), Tibes: People, Power, and Ritual at the Center of the Cosmos. Tuscaloosa: The University of Alabama Press, pp. 80114.Google Scholar
Newsom, L. A. 2016. Wood selection and technology in structures 1 and 5. In Beck, R., Moore, D., and Rodning, C. (eds.,) The Limits of Empire: Colonialism and Household Practice at the Berry Site, 1567–1568. Gainesville: University Presses of Florida, pp. 150232.Google Scholar
Newsom, L. A. 2018. Archaeobotanical analysis of the Perico Island North Midden (8MA6A), Manatee County, Florida. R. Austin (ed.), Final Report, Phase III Data Recovery and Archaeological Monitoring, 8MA6A, Perico Island North Midden, Harbour Isles Marina Project, SEARCH, Inc. (searchinc.com), pp. 375435.Google Scholar
Newsom, L. A., Brown, R., and Natt, W., 2013. Pineland cordage and modified wood: material-technological aspects of plant use. In Marquardt, W. H. and Walker, K. J. (eds.), The Archaeology of Pineland: A Coastal Southwest Florida Village Complex, AD 100–1600. Institute of Archaeology & Paleoenvironmental Studies, Monograph 3. Gainesville: Florida Museum of Natural History, pp. 585620.Google Scholar
Newsom, L. A., and Mihlbachler, M. H., 2006. Mastodons (Mammut americanum) diet foraging patterns based on analysis of dung deposits. In Webb, S. D. (ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River. New York: Plenum Press, pp. 263331.Google Scholar
Newsom, L. A., and Miller, R. B., 2009. Wood species analysis of ship timbers and wooden items recovered from shipwreck 31CR314, Queen Anne’s Revenge site. Research Report & Bulletin Series QAR-R-09-01, North Carolina Dept. of Cultural Resources, Office of the State Archaeologist, Underwater Archaeology Unit. Available at www.qaronline.org/techSeries/QAR-R-09-01.pdf.Google Scholar
Newsom, L. A., and Pearsall, D., 2003. Temporal and spatial trends indicated by a survey of Archaic- and Ceramic-Age archaeobotanical data from the Caribbean Islands. In Minnis, P (ed.), People and Plants in Ancient Eastern North America. Washington, DC: Smithsonian Institution Press, pp. 347412Google Scholar
Newsom, L. A., and Purdy, B. A., 1990. Dugout canoes. Florida Anthropologist 43(3):164179.Google Scholar
Newsom, L. A., and Quitmyer, I., 1991. Archaeobotanical and faunal remains from Fig Springs Mission (8Co1). In Weisman, B. (ed.), Excavations on the Franciscan Frontier: Fig Springs Mission. Gainesville: University Presses of Florida, pp. 206233.Google Scholar
Newsom, L. A., and Scarry, C. M., 2013. Homegardens and mangrove swamps: Pineland archaeobotanical research. In Marquardt, W. and Walker, K. J. (eds.), The Archaeology of Pineland: A Coastal Southwest Florida Village Complex, AD 100–1600. Inst. of Archaeology and Paleoenvironmental Studies Monograph 3. Gainesville: Florida Museum of Natural History, pp. 253304.Google Scholar
Newsom, L. A., and Talcott, J., 2012. Paleoethnobotanical insights into Archaic Period Settlement at Salt Springs (8MR2322), Ocala National Forest, Florida. In M. Russo and D. Seinfeld (eds.) (2021), 2008 and 2009 Emergency Salvage Excavations at Salt Springs (8MR2322), Ocala National Forest, LKGF00425. Tallahassee: NPS Southeastern Archaeological Center (SEAC), pp. 234–322.Google Scholar
Newsom, L. A., and Wing, E. S, 2004. On Land and Sea: Native American Uses of Biological Resources in the West Indies. Tuscaloosa: The University of Alabama Press.Google Scholar
Nichols, G., 2013. Sedimentology and Stratigraphy, 2nd ed. New York: John Wiley.Google Scholar
Nicholson, R. A., 2001. Taphonomic investigations. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. New York: John Wiley, pp. 179190.Google Scholar
Nilsson, T., and Daniel, G., 1990. Structure and the aging process of dry archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 6786.Google Scholar
Noshiro, S., and Baas, P., 1998. Systematic wood anatomy of Cornaceae and allies. IAWA Journal 19(1):4397.Google Scholar
Noshiro, S., Ikeda, H., and Joshi, L., 2010. Distinct altitudinal trends in the wood structure of Rhododendron arboretum (Ericaceae) in Nepal. IAWA Journal 31(4):443456.Google Scholar
Novak, K., De Luis, M., Gričar, J., Prislan, P., Merela, M., Smith, K. T., and Čufar, K., 2016. Missing and dark rings associated with drought in Pinus halepensis. IAWA Journal 37(2):260274.Google Scholar
Novak, K., Saz Sánchez, M. A., Cufar, K., Raventós, J., and de Luis, M.. 2013. Age, climate, and intra-annual density fluctuations in Pinus halepensis in Spain. IAWA Journal 34(4):459474.Google Scholar
Obayashi, J., and Okochi, T., 2013. Tree-ring, plant seeds, pottery and wooden cooking tools dated a wooden well at Saidaiji temple in Japan. Dendrochronologia 31:5257.Google Scholar
Öberg, L., and Kullman, L., 2011. Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64(2):183196.Google Scholar
O’Brien, M. J., Lyman, R. L., and Shiffer, M. B.. 2005 Archaeology as a Process: Processualism and Its Progeny. Salt Lake City: The University of Utah Press.Google Scholar
Obst, J. R., 1998. Special (secondary) metabolites from wood. In Bruce, A. and Palfreyman, J. W. (eds.), Forest Products Biotechnology. London: Taylor and Francis, pp. 151165.Google Scholar
O’Connor, T., and Evans, J. G., 2005. Environmental Archaeology: Principles and Methods. Stroud: Sutton Publishing.Google Scholar
O’Donnell, L., 2018. Into the woods: revealing Ireland’s Iron Age woodlands through archaeological charcoal analysis. Environmental Archaeology 23(3):240253.Google Scholar
Oeggl, K., Kofler, W., and Schmidl, A. et al., 2007. The reconstruction of the last itinerary of “Ötzi,” the Neolithic Iceman, by pollen analyses from sequentially sampled gut extracts. Quaternary Science Reviews 26:853861.Google Scholar
Olivar, J., Rathgeber, C., and Bravo, F., 2015. Climate change, tree-ring width and wood density of pines in Mediterranean environments. IAWA Journal 36(3):257269.Google Scholar
Olivier, A., 2004. Great expectations: the English Heritage approach to the management of the historic environment in England’s wetlands. Journal of Wetland Archaeology 4:155168.Google Scholar
Olivier, A. 2013. International and national wetland management policies. In Menotti, F. and Sullivan, A. O (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 687701.Google Scholar
Olson, M. E., 2005. Commentary: typology, homology, and homoplasy in comparative wood anatomy. IAWA Journal 26(4):507522.Google Scholar
O’Neill, K. 1993. The Broighter Hoard, or how Carson caught the boat. Archaeology Ireland 7(2):2426.Google Scholar
Orme, B. J., Coles, J. M., and Rouillard, S. E., 1983. Prehistoric woodworking from the Somerset Levels: 1. Timber. In Coles, J. M. (ed.), Somerset Levels Papers 9. Somerset Levels Project. Hertford: Stephen Austin, pp. 1943.Google Scholar
Ostapkowicz, J., Schulting, R., and Wheeler, R. et al., 2017. East-central Florida pre-Columbian wood sculpture: radiocarbon dating, wood identification and strontium isotope studies. Journal of Archaeological Science Reports 13:595608.Google Scholar
Ostapkowicz, J., Wiedenhoeft, A., and Bronk Ramsey, C. et al., 2011. “Treasures. of black wood, brilliantly polished”: five examples of Taíno sculpture from the tenth–sixteenth century Caribbean. Antiquity 85:942959.Google Scholar
Out, W. A., Hänninen, K., and Vermeeren, C., 2018. Using branch age and diameter to identify woodland management: new developments. Environmental Archaeology 23(3):254266.Google Scholar
Out, W. A., Vermeeren, C., and Hänninen, K., 2013. Branch age and diameter: useful criteria for recognizing woodland management in the present and past? Journal of Archaeological Science 40:40834097.Google Scholar
Oven, P., Merela, M., Mikac, U., and Serša, I., 2011. Application of 3D magnetic resonance microscopy to the anatomy of woody tissues. IAWA Journal 32(4):401414.Google Scholar
Owen-Smith, N., 1987. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13(3):351362.Google Scholar
Owen-Smith, N. 1988. Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge: Cambridge University Press.Google Scholar
Palmer, A., and Yates, N., 2005. Advanced Geography. Deddington: Philip Allan Updates.Google Scholar
Panshin, A. J., and DeZeeuw, C., 1980. The Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, 4th ed. McGraw-Hill: New York.Google Scholar
Pastore, T. C. M., Braga, J. W. B., and Coradin, V. T. R. et al., 2011. Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: discrimination of true mahogany, cedar, andiroba, and curupixá. Holzforschung 65:7380.Google Scholar
Patton, R., 2013. The temporal contexts of Precolumbian shell artifacts from Southwest Florida: a case study of Pineland. In Marquardt, W. H. and Walker, K. J. (eds.), The Archaeology of Pineland: A Coastal Southwest Florida Village Complex, AD 100–1600. Gainesville: Institute of Archaeology & Paleoenvironmental Studies, Monograph 3, Florida Museum of Natural History, pp. 545584.Google Scholar
Pauly, D., 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution 10(10):430.Google Scholar
Pearsall, D., 2000. Paleoethnobotany: A Handbook of Procedures, 2nd ed. New York: Academic Press.Google Scholar
Pearson, C. L., Manning, S. W., Coleman, M., and Jarvis, K., 2006. A dendrochemical study of Pinus sylvestris from Siljansfors Experimental Forest, central Sweden. Applied Geochemistry 21(10):16811691.Google Scholar
Pearson, R. G., and Wheeler, E. A., 1981. Computer identification of hardwood species. IAWA Bulletin n.s. 2:3740.Google Scholar
Pendergast, D. M., Graham, E., Calvera, R. J., and Jardines, M. J., 2002. The houses in which they dwelt: the excavation and dating of Taíno wooden structures at Los Buchillones, Cuba. Journal of Wetland Archaeology 2:6175.Google Scholar
Pendleton, M., and Warnock, P., 1990. Scanning electron microscope aided wood identification of a Bronze Age wooden diptych. IAWA Bulletin n.s. 11(3):255260.Google Scholar
Peszlen, I., 1994. Influence of age on selected anatomical properties of Populus clones. IAWA Journal 15(3):311321.Google Scholar
Peterson, C. E., 1990. New directions in the conservation of archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 433449.Google Scholar
Phelps, J. E., Isebrands, J. G., and Teclaw, R. M., 1987. Raw material quality of short-rotation, intensively cultured Populus clones. II. Wood and bark from first-rotation stems and stems grown from coppice. IAWA Bulletin n.s. 8(2):182186.Google Scholar
Phillips, E. W. J., 1941. The identification of coniferous woods by their microscopic structure. The Journal of the Linnean Society of London 52(343):259320.Google Scholar
Pinta, E., 2021. Norse management of wooden resources across the North Atlantic: highlights from the Norse Greenlandic settlements. Environmental Archaeology 26(2):209221.Google Scholar
Piqué, R., and Barceló, J. A., 2002. Firewood management and vegetation changes: a statistical analysis of charcoal remains from Holocene sites in the northeast Iberian Peninsula. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 17.Google Scholar
Popper, V. S., 1988. Selecting quantitative measurements in paleoethnobotany. In Popper, V. S. and Hastorf, C. A. (eds.), Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains. Chicago, IL: The University of Chicago Press, pp. 5371.Google Scholar
Popular Science Monthly, editorial staff, 1934. Woodworker’s Turning and Joining Manual: Simple and Direct Instructions Any One Can Follow to Make End Tables, Chairs, Benches, Bookracks, Cabinets and Other Furniture. New York: Popular Science Publishing Company.Google Scholar
Pourtahmasi, K., Lotfiomran, N., Bräuning, A., and Parsapajouh, D., 2011. Tree-ring width and vessel characteristics of oriental beech (Fagus orientalis) along an altitudinal gradient in the Caspian forests, northern Iran. IAWA Journal 32(4):461473.Google Scholar
Pratt, R. B., Percolla, M. I., and Jacobsent, A. L., 2015. Integrative xylem analysis of chaparral shrubs. In Hacke, U. (ed.), Functional and ecological xylem anatomy. Heidelberg: Springer International Publishing, pp. 189207.Google Scholar
Preston, R., 2007. The Wild Trees: A Story of Passion and Daring. New York: Random House.Google Scholar
Prior, J., and Alvin, K. L., 1986. Structural changes on charring woods of Dichrostachys and Salix from southern Africa: the effect of moisture content. IAWA Bulletin n.s. 7(3):243250.Google Scholar
Prior, J., and Gasson, P., 1993. Anatomical changes on charring six African hardwoods. IAWA Journal 14(1):7786.Google Scholar
Priya, P. B., and Bhat, K. M., 1997. Wood anatomical changes in juvenile teak due to insect defoliation. IAWA Journal 18(3):311317.Google Scholar
Priya, P. B., and Bhat, K. M., 1999. Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis). IAWA Journal 20(2):181192.Google Scholar
Prufer, K. M. and Dunham, P. S., 2009. A shaman’s burial from an early classic cave in Maya mountains. World Archaeology 41(2):295320.Google Scholar
Pumijumnong, N., and Park, W. K., 1999. Vessel chronologies from teak in northern Thailand and their climatic signal. IAWA Journal 20:285294.Google Scholar
Purdy, B. A., and Newsom, L. A., 1985. Significance of archaeological wet sites: a Florida example. National Geographic Research 1(4):564569.Google Scholar
Putz, M. K., and Taylor, E. L., 1996. Wound response in fossil trees from Antarctica and its potential as a paleoenvironmental indicator. IAWA Journal 17(1):7788.Google Scholar
Py, V., 2006. Mine charcoal deposits: methods and strategies. The Medieval Fournel silver mines in the Hautes-Alpes (France). In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 3546.Google Scholar
Quarta, G., D’Elia, M., and Calcagnile, L., 2008. High resolution AMS radiocarbon dating of archaeological charcoals. In Fiorentino, G. and Magri, D. (eds.), Charcoals from the Past: Cultural and Palaeoenvironmental Implications. BAR International Series 1807.Oxford: Archaeopress, pp. 225228.Google Scholar
Raiswell, R., 2001. Defining the burial environment. In Brothwel, D. R. l and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. Chichester: John Wiley, pp. 595603.Google Scholar
Rajput, K. S., Sanghvi, G. V., Koyani, R. D., and Rao, K. S., 2009. Anatomical changes in the stems of Azadirachta indica (Meliaceae) infected by pathogenic fungi. IAWA Journal 30(1):2736.Google Scholar
Rasmussen, P., 1990. Pollarding trees in the Neolithic: often presumed—difficult to prove. In Robinson, D. E. (ed.), Experimentation and Reconstruction in Environmental Archaeology. Oxford: Oxbow Books, pp. 7799.Google Scholar
Raven, P. H., Evert, R. F., and Eichhorn, S. E., 1999. Biology of Plants, 6th ed. New York: W. H. Freeman.Google Scholar
Record, S. J., 1943. Keys to American woods continued. Tropical Woods 73:2342.Google Scholar
Record, S. J., and Hess, R. W., 1943. Timbers of the New World. New Haven, CT: Yale University Press.Google Scholar
Record, S. J., and Hess, R. W. 1942–1948 Keys to American Woods. Tropical Woods 72: 1929 ;73: 23–42; 75: 8–26; 76: 32–47; 85: 1–19; 94: 29–52.Google Scholar
Reitz, E. J., and Shackley, M., 2012. Environmental Archaeology. New York: Springer.Google Scholar
Reitz, E. J., and Wing, E. S., 2008. Zooarchaeology, 2nd ed. Cambridge Manuals in Archeology. Cambridge: Cambridge University Press.Google Scholar
Rendle, B. J., 1960. Juvenile and adult wood. Journal of the Institute of Wood Science 5:5861.Google Scholar
Rich, F. J., Semratedu, A., Elzea, J., and Newsom, L. A., 2000. Palynology and paleoecology of a wood-bearing clay deposit from Deepstep, Georgia. Southeastern Geology 39(2):7180.Google Scholar
Rich, S., Manning, S. W., and Degryse, P. et al., 2016. To put a cedar ship in a bottle: dendroprovenancing three ancient East Mediterranean watercraft with the 87Sr/86Sr isotope ratio. Journal of Archaeological Science: Reports 9:514521.Google Scholar
Rioux, D., 1994. Anatomy and ultrastructure of pith fleck-like tissues in some Rosaceae tree species. IAWA Journal 15(1):6573.Google Scholar
Robertson, D., and Ames, J., 2015. Timber monuments and coastal processes: recording and monitoring of archaeological remains at Holme Beach, Norfolk, UK 2003–2008. Journal of Wetsite Archaeology 15:3456.Google Scholar
Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M., and Surano, K. A., 1983. Responses of selected plant species to elevated carbon dioxide in the field. Journal of Environmental Quality 12:569574.Google Scholar
Romagnoli, M., Sarlatto, M., Terranova, F., Bizzarri, E., and Cesetti, S., 2007. Wood identification in the Cappella Palatina ceiling (12th Century) in Palermo (Sicily, Italy). IAWA Journal 28(2):109123.Google Scholar
Rossen, J., and Olson, J., 1985. The controlled carbonization and archaeological analysis of SE US wood charcoals. Journal of Field Archaeology 12:445456.Google Scholar
Roper, D. C., 1979. The method and theory of site catchment analysis: a review. In Schiffer, M. B. (ed.), Advances in Archaeological Method and Theory. New York: Academic Press, pp. 119140.Google Scholar
Rowell, R. M. and Barbour, R. J. (eds.), 1990. Archaeological Wood: Properties, Chemistry, and Preservation. Advances in Chemistry Series 225. Washington, DC: American Chemical Society.Google Scholar
Ruelle, J., Clair, B., Beauchêne, J., Prévost, M. F., and Fournier, M., 2006. Tension wood and opposite wood in 21 tropical rain forest species 2: comparison of some anatomical and ultrastructural criteria. IAWA Journal 27(4):341376.Google Scholar
Ruffinatto, F., Crivellaro, A., and Wiedenhoeft, A. C., 2015. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA Journal 36(2):208241.Google Scholar
Ruffinatto, F., Macchioni, N., Boetto, G., Baas, P., and Zanuttini, R., 2010. Reflected light microscopy as a non-invasive identification tool for wooden artifacts. IAWA Journal 31(3):317331.Google Scholar
Ruhl, D., and Purdy, B. A., 2005. One hundred-one canoes on the shore: 3,000–5,000-year-old canoes from Newnans Lake, Florida. Journal of Wetland Archaeology 5:111127.Google Scholar
Rury, P. M., 1985. Systematic and ecological wood anatomy of the Erythroxylaceae. IAWA Bulletin n.s. 6(4):365397.Google Scholar
Sakamoto, Y., Yamada, Y., Sano, Y., Tamai, Y., and Funada, R., 2004. Pathological anatomy of Nectrica canker on Fraxinus mandshurica var. japonica. IAWA Journal 25(2):165174.Google Scholar
Sands, R., and Hale, A., 2001. Evidence from marine crannogs of later prehistoric use of the Firth of Clyde. Journal of Wetland Archaeology 1:4154.Google Scholar
Sarmiento, C., Détienne, P., and Heinz, C. et al., 2011. Pl@ntWood: a computer-assisted identification tool for 110 species of Amazonian trees based on wood anatomical features. IAWA Journal 32(2):221232.Google Scholar
Sass, U., and Eckstein, D., 1995. The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees – Structure and Function 9:247252.Google Scholar
Savidge, R. A. 1996. Xylogenesis, genetic and environmental regulation: a review. IAWA Journal 17(3):269310.Google Scholar
Savidge, R. A., 2000. Biochemistry of seasonal cambial growth and wood formation: an overview of the challenges. In Savidge, R., Barnett, J., and Napier, R. (eds.), Cell and Molecular Biology of Wood Formation. Oxford: BIOS Scientific Publishers, pp. 130.Google Scholar
Savva, Y. V., Schweingruber, F. H., Vaganov, E. A., and Milyutin, L. I., 2003. Influence of climate changes on tree-ring characteristics of Scots pine provenances in southern Siberia (forest-steppe). IAWA Journal 24(4):371383.Google Scholar
Scarry, C. M., and Newsom, L. A., 1992. Archaeobotanical research in the Calusa heartland. In Marquardt, W. H. (ed.), Culture and Environment in the Domain of the Calusa. Gainesville, FL: Inst. Archaeology and Paleoenvironmental Studies Monograph 1, Florida Museum of Natural History, pp. 375401.Google Scholar
Scheel-Ybert, R., 2000. Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Review of Palaeobotany and Palynology 110:111138.Google Scholar
Scheel-Ybert, R. 2002a. Evaluation of sample reliability in extant and fossil assemblages. In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 916.Google Scholar
Scheel-Ybert, R. 2002b. Late Holocene southeastern Brazilian fisher-gatherer-hunters: environment, wood exploitation, and diet. In Thiebault, S (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 159168.Google Scholar
Schiffer, M. B., 1983. Toward the identification of formation processes. American Antiquity 48(4):675706.Google Scholar
Schiffer, M. B. 1986. Radiocarbon dates and the “old wood” problem: the case of the Hohokam chronology. Journal of Archaeological Science 13:1330.Google Scholar
Schiffer, M. B. 1987. Formation Processes of the Archaeological Record. Albuquerque: University of New Mexico Press.Google Scholar
Schimleck, L. R., Monteiro de Matos, J. L., and Bolzon Muniz, G. I. et al., 2013. Examination of wood properties of plantation-grown pernambuco (Caesalpina echinata). IAWA Journal 34(1):3448.Google Scholar
Schinker, M. G., Hansen, N., and Spiecker, H., 2003. High-frequency densitometry: a new method for the rapid evaluation of wood density variations. IAWA Journal 24(3):231239.Google Scholar
Schmidt, N. M., Baittinger, C., Kollmann, J., and Forchhammer, M. C., 2010. Consistent dendrochronological response of the dioecious Salix arctica to variation in local snow precipitation across gender and vegetation types. Arctic, Antarctic, and Alpine Research 42(4):471475.Google Scholar
Schmitt, U., Grünwald, C., and Eckstein, D., 2000. Xylem structure in pine trees grown near the Chernobyl Nuclear Power Plant/Ukraine. IAWA Journal 21(4):379387.Google Scholar
Schmitt, U., and Liese, W., 1994. Wound tyloses in Robinia pseudoacacia L. IAWA Journal 15(2):157160.Google Scholar
Schmitt, U., Lüer, B., Dujesiefken, D., and Koch, G., 2014. The Massaria disease of plane trees: its wood decay mechanism. IAWA Journal 35(4):395406.Google Scholar
Schmitt, U., Richter, H. G., and Muche, C., 1997. TEM study of wound-induced vessel occlusions in European ash (Fraxinus excelsior L.). IAWA Journal 18(4):401404.Google Scholar
Schniewind, A. P., 1990. Physical and mechanical properties of archaeological wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation, Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 87109.Google Scholar
Schoch, W., Heller, I., Schweingruber, F. H., and Kienast, F., 2004. Microscopic Anatomy of Central European Species. Online version: www.woodanatomy.ch, accessed 17 March 2019.Google Scholar
Schweingruber, F. H., 1988. Tree Rings: Basics and Applications of Dendrochronology. Dordrecht: Kluwer Academic Publishers.Google Scholar
Schweingruber, F. H. 1990. Microscopic Wood Anatomy: Structural Variability of Stems and Twigs in Recent and Subfossil Woods from Central Europe, 3rd ed. Birmensdorf: Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL).Google Scholar
Schweingruber, F. H. 1993 Trees and Wood in Dendrochronology: Morphological, Anatomical, and Tree-Ring Analytical Characteristics of Trees Frequently Used in Dendrochronology. Berlin: Springer-Verlag.Google Scholar
Schweingruber, F. H. 1996. Tree Rings and Environment: Dendroecology. Berne: Paul Haupt Publishers.Google Scholar
Schweingruber, F. H. 2006. Anatomical characteristics and ecological trends in the xylem and phloem of Brassicaceae and Resedaceae. IAWA Journal 27(4):419442.Google Scholar
Schweingruber, F. H. 2007. Wood Structure and Environment. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Schweingruber, F. H. 2011. Anatomy of European Woods. Huizen: Verlag Kessel.Google Scholar
Schweingruber, F. H. 2012a. Trees and Wood in Dendrochronology: Morphological, Anatomical, and Tree-Ring Analytical Characteristics of Trees Frequently Used in Dendrochronology. Berlin: Springer-Verlag.Google Scholar
Schweingruber, F. H. 2012b. Microtome sections of charcoal: technical note. IAWA Journal 33(3):327328.Google Scholar
Schweingruber, F. H., Börner, A., and Schulze, E.-D., 2008. Atlas of Woody Plant Stems: Evolution, Structure, and Environmental Modifications. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Schweingruber, F. H., Börner, A., and Schulze, E.-D. 2011. Atlas of Stem Anatomy in Herbs, Shrubs and Trees: Volume 1. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Schweingruber, F. H., Börner, A., and Schulze, E.-D. 2012. Atlas of Stem Anatomy in Herbs, Shrubs and Trees: Volume 2. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Schweingruber, F. H., Hellmann, L., Tegel, W., Braum, S., Nievergelt, D., and Büntgen, U., 2013. Evaluating the wood anatomical and dendroecological potential of arctic dwarf shrub communities. IAWA Journal 34(4):485497.Google Scholar
Schweingruber, F. H. and Landolt, W., 2005. The Xylem Database, Swiss Federal Research Institute WSL (www.wsl.ch/dendro/xylemdb/index.php).Google Scholar
Scott, A. C., 2010. Charcoal recognition, taphonomy and uses in paleoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291:1139.Google Scholar
Scott, A. C., and Jones, T. P., 1991. Microscopical observations of recent and fossil charcoal. Microscopy and Analysis 24:1315.Google Scholar
Shackleton, C. M., and Prins, F., 1992. Charcoal analysis and the “Principle of Least Effort”: a conceptual model. Journal of Archaeological Science 19(6):631637.Google Scholar
Shapiro, B., and Hofreiter, M. (eds.), 2012. Ancient DNA: Methods in Molecular Biology (Methods and Protocols), vol. 840. New York: Humana Press.Google Scholar
Shaw, J. D., 2012. Economies of driftwood: fuel harvesting strategies in the Kodiak Archipelago. Etudes inuit/Inuit Studies 36(1):6388.Google Scholar
Shen, S. Z., Crowley, J. L., and Wang, Y. et al., 2011. Calibrating the end-Permian mass extinction. Science 334:13671372.Google Scholar
Sherwood, S. C., and Newsom, L. A., 2015. Micromorphological Analysis of the Surtshellir Cave Deposits, Western Iceland. Report to K. P. Smith, Haffenreffer Museum of Anthropology, Brown University, for inclusion in Archaeological and Natural Scientific Investigations of Surtshellir Cave, Iceland.Google Scholar
Shott, M. J., 2001. Quantification of broken objects. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. Chichester: John Wiley, pp. 711721.Google Scholar
Simpson, M. G., 2006. Plant systematics. Amsterdam: Elsevier Academic Press.Google Scholar
Singh, A. P., Kim, Y. S., and Chavan, R. R., 2019. Relationship of wood cell wall ultrastructure to bacterial degradation of wood. IAWA Journal 40(4):845870.Google Scholar
Singh, A. P., Kim, Y. S., and Wi, S. G., 2002. Inhomogeneity in the composition of vesture walls in an archaeological wood – technical note. IAWA Journal 23(1):7782.Google Scholar
Smart, T. L., and Hoffman, E. S., 1988. Environmental interpretation of archaeological charcoal. In Popper, V. S. and Hastorf, C. A. (eds.), Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains. Chicago, IL: The University of Chicago Press, pp. 167205.Google Scholar
Smith, A., 2014. The use of multivariate statistics within archaeobotany. In Marston, J. M., Guedes, J. D., and Warinner, C. (eds.), Method and Theory in Paleoethnobotany. Boulder: University Press of Colorado, pp. 181204.Google Scholar
Smith, F. H., and Gannon, B. L., 1972. Sectioning of charcoals and dry ancient woods. American Antiquity 38:468472.Google Scholar
Sousa, V. B., Cardoso, S., and Pereira, H., 2014. Age trends in the wood anatomy of Quercus faginea. IAWA Journal 35(3):293306.Google Scholar
Speer, J. H., Grissino-Mayer, H. D., Orvis, K. H., and Greenberg, C. H., 2009. Climate response of five oak species in the eastern deciduous forest of the southern Appalachian Mountains. Canadian Journal of Forest Research 39(3):507518.Google Scholar
Spiers, A. K., McConnachie, G., and Lowe, A. J., 2009. Chloroplast DNA from 16th century waterlogged oak in a marine environment: initial steps in sourcing the Mary Rose timbers. In Haslam, M., Robertson, G., Crowther, A., Nugent, S., and Kirkwood, K. (eds.), Archaeological Science Under a Microscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy. Canberra: ANU E-Press, pp. 165179.Google Scholar
Stahle, D. W., 1996. The hydroclimatic application of tree-ring chronologies. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tempe: Department of Geosciences, University of Arizona, pp. 119126.Google Scholar
Stahle, D. W., D/Arrigo, R. D., and Krusick, P. J. et al., 1998. Experimental dendroclimatic reconstruction of the Southern Oscillation. Bulletin of the American Meteorological Society 79:21372152.Google Scholar
Stahle, D. W., and Cleaveland, M. K., 1992. Reconstruction and analysis of spring rainfall over the southeastern US for the past 1000 years. Bulletin of the American Meteorological Society 73(12):19471961.Google Scholar
Stahle, D. W., and Cleaveland, M. K., 1993. Southern Oscillation extremes reconstructed from tree rings of the Sierra Madre Occidental and southern Great Plains. Journal of Climate 6(1):129140.Google Scholar
Stahle, D. W., Cleaveland, M. K., Blanton, D. B., Therrell, M.D., and Gay, D.A., 1998. The Lost Colony and Jamestown droughts. Science 280:564567.Google Scholar
Stahle, D. W., Edmondson, J. R., and Howard, I. M. et al., 2019. Longevity, climate sensitivity, and conservation status of wetland trees at Black River, North Carolina. Environmental Research Communications 1:04102. Published online 9 May 2019 (https://doi.org/10.1088/2515-7620/ab0c4a).Google Scholar
Stern, W. L., 1976. Multiple uses of institutional wood collections. Curator 19(4):265270.Google Scholar
Stern, W. L. 1988. Index Xylariorum: Institutional Wood Collections of the World, 3. IAWA Bulletin 9(2):203252.Google Scholar
Stern, W. L., and Greene, S., 1958. Some aspects of variation in wood. Tropical Woods 108:6571.Google Scholar
Stevenson, A., 2018. Egyptian archaeology and the museum. Oxford Handbooks Online, DOI: 10.1093/oxfordhb/9780199935413.013.25. www.oxfordhandbooks.com., accessed 2 August 2018.Google Scholar
Stojnic, S., Sass-Klaassen, U., Orlovic, S., Matovic, B., and Eilmann, B., 2013. Plastic growth response of European beech provenances to dry site conditions. IAWA Journal 34(4):475484.Google Scholar
Stokstad, E., 2016. A time capsule from Bronze Age Britain: charred river houses offer an extraordinary view of everyday life 3000 years ago. Science 333(6296):210211.Google Scholar
Strullu-Derrien, C., Kenrick, P., Badel, E., Cochard, H., and Tafforeau, P., 2013. An overview of the hydraulic systems in early land plants. IAWA Journal 34(4):333351.Google Scholar
Stuessy, T. F., 2009. Plant Taxonomy: The Systematic Evaluation of Comparative Data, 2nd ed. New York: Columbia University Press.Google Scholar
Stuijts, I., 2007. Wood and charcoal research in Ireland. In Murphy, E. M. and Whitehouse, N. J. (eds.), Environmental Archaeology in Ireland. Oxford: Oxbow Books, pp. 179193.Google Scholar
Stuijts, I. 2006. Charcoal sampling sites and procedures: practical themes from Ireland. In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 2533.Google Scholar
Sussman, R., 2014. The Oldest Living Things in the World. Chicago, IL: University of Chicago Press.Google Scholar
Sutton, A., and Tardif, J., 2005. Distribution and anatomical characteristics of white rings in Populus tremuloides. IAWA Journal 26(2):221238.Google Scholar
Suzuki, M., and Ohba, H., 1988. Wood structural diversity among Himalayan Rhododendron. IAWA Bulletin n.s. 9(4):317326.Google Scholar
Tarelkin, Y., Delvaux, C., and De Ridder, M. et al., 2016. Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA Journal 37(2):275294.Google Scholar
Taylor, M., 1981. Wood in Archaeology. Shire Archaeology Series. Aylesbury: Shire Publications.Google Scholar
Taylor, R. E., 2001. Radiocarbon dating. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. Chichester: John Wiley, pp. 2334.Google Scholar
Tereso, J. P., 2009. Plant macrofossils from the Roman settlement of Terronha de Pinhovelo, Northwest Iberia. Vegetation History and Archaeobotany 18(6):489501.Google Scholar
Teixeira, S. R., Dixon, J. B., White, G. N., and Newsom, L. A., 2002. Charcoal in soils: a preliminary view. In Dixon, J. B. (ed.), Environmental Soil Mineralogy. Madison, WI: Soil Science Society of America, pp. 819830.Google Scholar
Terral, J., 2000. Exploitation and management of the olive tree during prehistoric times in Mediterranean France and Spain. Journal of Archaeological Science 27(2):127133.Google Scholar
Terral, J. 2002. Quantitative anatomical criteria for discriminating wild grapevine (Vitis vinifera ssp. sylvestris) from cultivated vines (Vitis vinifera ssp. vinifera). In Thiébault, S. (ed.), Charcoal Analysis: Methodological Approaches, Paleoecological Results and Wood Uses. BAR International Series 1063. Oxford: BAR Publishing, pp. 5964.Google Scholar
The Plant List, 2013. Version 1.1. Published on the Internet; www.theplantlist.org/, accessed 1 July 2017.Google Scholar
Thiébault, S., 2006. Wood anatomical evidence of pollarding in ring porous species: a study to develop? In Dufraisse, A. (ed.), Charcoal Analysis: New Analytical Tools and Methods for Archaeology. BAR International Series 1483. Oxford: Archaeopress, pp. 95102.Google Scholar
Thomas, F. M., Bartels, C., and Gieger, T., 2006. Alterations in vessel size in twigs of Quercus robur and Q. petraea upon defoliation and consequences for water transport under drought. IAWA Journal 27(4):395407.Google Scholar
Thompson, G. B., 1994. Wood charcoals from tropical sites: a contribution to methodology and interpretation. In Hather, J. G. (ed.), Tropical Archaeobotany: Applications and New Developments. New York: Routledge, pp. 964.Google Scholar
Thompson, I., Mackey, B., McNulty, S., and Mosseler, A., 2009. Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Technical Series no. 43. Montreal: Secretariat of the Convention on Biological Diversity.Google Scholar
Thompson, V. D., Marquardt, W., Walker, K., Roberts Thompson, A., and Newsom, L., 2018. Collective action, state building, and the rise of the Calusa, Southwest Florida, USA. Journal of Anthropological Archaeology 51:2844.Google Scholar
Thompson, V. D., and Pluckhahn, T. J., 2012. Monumentalization and ritual landscapes at Fort Center in the Lake Okeechobee basin of South Florida. Journal of Anthropological Archaeology 31:4965.Google Scholar
Tillman, D. A., 1978. Wood as an Energy Resource. New York: Academic Press.Google Scholar
Tippett, J. T., 1986. Formation and fate of kino veins in Eucalyptus L’Hérit. IAWA Bulletin n.s. 7(2):137143.Google Scholar
Titiz, B., and Sanford, R. L., Jr., 2007. Soil charcoal in old growth rain forests from sea level to the Continental Divide. Biotropica 39(6):673682.Google Scholar
Toghraie, N., Hosseinzadeh, A., Hejazi, R., and Yazdani, H. R., 1999. A computerized system for wood research and identification: a technical note. IAWA Journal 20(2):147148.Google Scholar
Tolar, T., Jacomet, S., Velusĉek, A., and Ĉufar, K., 2011. Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Vegetation History and Archaeobotany 20(3):207222.Google Scholar
Tomlinson, P. B., 1961. Anatomy of the Monocotyledons, Volume II, Palmae. Oxford: Clarendon Press.Google Scholar
Tomlinson, P. B. 1983. Tree architecture: new approaches help to define the elusive biological property of tree form. American Scientist 71:141149.Google Scholar
Tomlinson, P. B. 2016. The Botany of Mangroves, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Towner, H. F., 1992. EcoStat: An Ecological Analysis Program. Campton, NH: Trinity Software.Google Scholar
Trockenbrodt, M., 1990. Survey and discussion of the terminology used in bark anatomy. IAWA Bulletin n.s. 11(2):141166.Google Scholar
Tropicos.org, 2019. Missouri Botanical Garden. www.tropicos.org/Name/1601386, accessed 24 March 2019.Google Scholar
Trouet, V., Esper, J., and Graham, N. E. et al., 2009. Persistent positive North Atlantic Oscillation Mode dominated the Medieval Climate Anomaly. Science 324:7880.Google Scholar
Trouet, V., Haneca, K., Coppin, P., and Beeckman, H., 2001. Tree ring analysis of Brachystegia spiciformis and Isoberlinia tomentosa: evaluation of the ENSO-signal in the Miombo Woodland of eastern Africa. IAWA Journal 22(4):385399.Google Scholar
Tsuchiya, R., and Furukawa, I., 2009. Radial variation of vessel lumen diameter in relation to stem increment in 30 hardwood species. IAWA Journal 30(3):331342.Google Scholar
Tukey, J. W., 1977. Exploratory Data Analysis. Reading, MA: Addison-Wesley.Google Scholar
Tukey, J. W. 1980. We need both exploratory and confirmatory. The American Statistician 34(1):2325.Google Scholar
Tumajer, J., Burda, J., and Treml, V., 2015. Dating of rockfall events using vessel lumen area in Betula pendula. IAWA Journal 36(3):286299.Google Scholar
Turner, M. G., Collins, S. L., and Lugo, A. L. et al., 2003. Disturbance dynamics and ecological response: the contribution of long-term ecological research. Bioscience 53(1):4656.Google Scholar
UNESCO World Heritage Centre, 1992–2019. World Heritage List. Available online at www.whc.unesco.org, accessed 20 June 2019.Google Scholar
Van Arsdale, R. D., Stahle, D. W., Cleaveland, M. K., and Guccione, M. J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26(6):515518.Google Scholar
Van de Noort, R., 2013. Wetland archaeology in the 21st century: adapting to climate change. In Menotti, F. and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 719731.Google Scholar
Valcárcel Rojas, R., 2011, In Ramos, M. S. and Hernández de Lara, O. (eds.), Arqueología Histórica en América Latina: Perspectivas Desde Argentina y Cuba. Buenos Aires: Departamento de Ciencias Sociales, Universidad Nacíonal de Luján, pp. 159170.Google Scholar
Vavrčík, H., Gryc, V., and Rybníček, M., 2007. Analysis of root-wood in Scots pine. In K. Haneca et al. (eds.), TRACE – Tree Rings in Archaeology, Climatology and Ecology, Vol. 5: Proceedings of the DENDROSYMPOSIUM 2006, Tervuren, Belgium. Schriften des Forschungszentrums Jülich, Reihe Umwelt 74: 267276.Google Scholar
Veal, R., 2012. From context to economy: charcoal as an archaeological interpretive tool. A case study from Pompeii (3rd c. B.C.–A.D. 79). Journal of Roman Archaeology, Supplemental Series No. 91:1951.Google Scholar
Veal, R. 2017. Wood and charcoal for Rome: towards an understanding of ancient regional fuel economies. Chapter 15 in de Haas, T. C. A., and Tol, G. (eds.), Rural Communities in a Globalizing Economy: New Perspectives on the Economic Integration of Roman Italy. Leiden: Koninklijke Brill.Google Scholar
Veal, R., O’Donnell, L., and McParland, L., 2016. Reflectance: current state of research and future directions for archaeological charcoal; results from a pilot study on Irish Bronze Age cremation charcoals. Journal of Archaeological Science 75:7281.Google Scholar
Veal, R., and Thompson, G., 2008. Fuel supplies for Pompeii: pre-Roman and Roman charcoals of the Casa delle Vestalil. In Fiorentino, G. and Magri, D. (eds.), Charcoals from the Past: Cultural and Palaeoenvironmental Implications. BAR International Series 1807. Oxford: Archaeopress, pp. 287297.Google Scholar
Vermeeren, C., 1999. The use of imported and local wood species at the Roman port of Berenike, Red Sea Coast, Egypt. In Van der Veen, M. (ed.), The Exploitation of Plant Resources in Ancient Africa, New York: Kluwer Academic/Plenum Publishers, pp. 199204.Google Scholar
Vernet, J.-L., Ogereau, P., Figueiral, I., Machado Yanes, C., and Uzquiano, P., 2001. Guide d’identification des charbons de bois prèhistoriques et rècents, Sud-Ouest de l’Europe: France. Pèninsule Ibèrique et îles Canaries. Paris: CNRS Editions.Google Scholar
von Jüptner, H., and Nagel, O., 2019 [original 1908]. Heat Energy and Fuels: Pyrometry, Combustion, Analysis of Fuels and Manufacture of Charcoal, Coke and Fuel Gases. New York: McGraw Publishing Co. (reprint by Leopold Classic Library, Columbia, South Carolina, www.leopoldclassiclibrary.com).Google Scholar
Wadley, L., Sievers, C., and Bamford, M. et al., 2011. Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science 334(6061):13881391.Google Scholar
Waito, J., Conciatori, F., and Tardiff, J. C., 2013. Frost rings and white earlywood rings in Picea mariana trees from the boreal plains, central Canada. IAWA Journal 34(1):7187.Google Scholar
Walker, A., ed., 2005. The Encyclopedia of Wood: A Tree-by-Tree Guide to the World’s Most Versatile Resource. London: Quarto.Google Scholar
Walker, B., and Salt, D., 2006. Resilience Thinking: Sustaining Ecosystems and People in a Changing World. Washington, DC: Island Press.Google Scholar
Walker, K. J., Marquardt, W. H., Newsom, L. A., and Clarke, M., 2019. The Pineland Site Complex: a Southwest Florida coastal wetsite. In Wheeler, R. and Ostapkowicz, J. (eds.), Iconography and Wetsite Archaeology of Florida’s Watery Realms. Gainesville: University of Florida Press, pp. 111128.Google Scholar
Wallis, N. J., Cordell, A. S., and Newsom, L. A., 2011. Using hearths for temper: petrographic analysis of Middle Woodland charcoal-tempered pottery in Northeast Florida. Journal of Archaeological Science 38:29142924.Google Scholar
Wang, J., Ning, L., Gao, Q., Zhang, S., and Chen, Q., 2019. The identification and characteristics of Phoebe zhennan buried wood. IAWA Journal 40(4):804819.Google Scholar
Wang, Y., Heintzman, P. D., and Newsom, L. et al., 2017. The southern coastal Beringian land bridge: cryptic refugium or pseudorefugium for woody plants during the Last Glacial Maximum? Journal of Biogeography 44(7):15591571.Google Scholar
WCSP, 2020. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://wcsp.science.kew.org/, accessed 21 July 2020.Google Scholar
Weber, U. M., and Schweingruber, F. H., 1995. A dendroecological reconstruction of western spruce budworm outbreaks (Choristoneura occidentalis) in the Front Range, Colorado, from 1720 to 1986. Trees, Structure and Function 9:204213.Google Scholar
Wermuth, J. A., 1990. Simple and integrated consolidation systems for degraded wood. In Rowell, R. M. and Barbour, R. J. (eds.), Archaeological Wood: Properties, Chemistry, and Preservation. Advances in Chemistry Series 225. Washington, DC: American Chemical Society, pp. 301359.Google Scholar
Western, A. C., 1963. Wood and charcoal in archaeology. In Brothwell, D. and Higgs, E. (eds.), Science in Archaeology. Bristol: Thames and Hudson, pp. 150158.Google Scholar
Wheeler, E. A., 2011. InsideWood: a web resource for hardwood anatomy. IAWA Journal 32(2):199211.Google Scholar
Wheeler, E. A., and Baas, P., 1998. Wood identification: a review. IAWA Journal 19(3):241264.Google Scholar
Wheeler, E. A., Baas, P., and Rodgers, S., 2007. Variations in dicot wood anatomy: a global analysis based on the InsideWood database. IAWA Journal 28(3):229258.Google Scholar
Wheeler, E. A., Gasson, P., and Baas, P., 2020. Using the InsideWood web site: potentials and pitfalls. IAWA Journal 41(4):412462.Google Scholar
Wheeler, E. A., and Manchester, S. R., 2002. Woods of the Eocene nut beds flora: Clarno Formation, Oregon, USA. IAWA Journal, Supplement 3. Leiden: International Association of Wood Anatomists.Google Scholar
Wheeler, E. A., and Pearson, R. G., 1985. A critical review of the IAWA Standard List of Characters formatted for the Ident Programs. IAWA Bulletin n.s. 6(2):151160.Google Scholar
Wheeler, E. A., Pearson, R. G., LaPasha, C. A., Zack, T., and Hatley, W., 1986. Computer-Aided Wood Identification. North Carolina Agricultural Research Service Bulletin No. 474. Raleigh: North Carolina State University.Google Scholar
Wheeler, J., 2011. Charcoal analysis of industrial fuelwood from medieval and early modern iron-working sites in Bilsdale and Rievaulx, North Yorkshire, UK: evidence for species selection and woodland management. Environmental Archaeology 16(1):1635.Google Scholar
White, C. E., and Shelton, C. P., 2014. Recovering macrobotanical remains: current methods and techniques. In Marston, J. M., Guedes, J. D., and Warinner, C. (eds.), Method and Theory in Paleoethnobotany. Boulder: University Press of Colorado, pp. 95114.Google Scholar
White, M. S., 1980. Wood Identification Handbook: Commercial Woods of the United States. New York: Charles Scribner’s Sons.Google Scholar
Whitney, E., and Means, D. B., 2014. Florida’s Uplands (High Pine, Scrub, Prairies, Hardwood Forests and Dunes): Florida’s Natural Ecosystems and Native Species, Volume 1. Sarasota, FL: Pineapple Press.Google Scholar
Wiedenhoeft, A. C., 2011a. Structure and function of wood. In Ross, R. J. (ed.), Wood Handbook: Wood as an Engineering Material, 2010 edition. Madison, WI: Forest Products Society, pp. 3-13-18.Google Scholar
Wiedenhoeft, A. C. 2011b. Identification of Central American Woods. Madison, WI: Forest Products Society.Google Scholar
Wiedenhoeft, A. C., and Miller, R. B., 2002. Brief comments on the nomenclature of softwood axial resin canals and their associated cells. IAWA Journal 23(3):299303.Google Scholar
Wiemann, M. C., 2011. Characteristics and availability of commercially important woods. In Ross, R. J. (ed.), Wood Handbook: Wood as an Engineering Material, 2010 Edition. Reprinted from USDA Forest Products Laboratory General Technical Report FPL-GTR-190. Madison, WI: Forest Products Society, 2-1–2-45.Google Scholar
Williams, J. W., and Jackson, S. T., 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5(9): 475482.Google Scholar
Wilmking, M., Hallinger, M., and Van Bogaert, R. et al., 2012. Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30:213222.Google Scholar
Wilson, K. and White, D. J. B., 1986. The Anatomy of Wood: Its Diversity and Variability. London: Stobart.Google Scholar
Wimmer, R., and Downes, G. M., 2003. Temporal variation of the ring width: wood density relationship in Norway spruce grown under two levels of anthropogenic disturbance. IAWA Journal 24(1):5361.Google Scholar
Wimmer, R., and Grabner, M., 2000. A comparison of tree-ring features in Picea abies as correlated with climate. IAWA Journal 21(4):403416.Google Scholar
Winston, J. E., 1999. Describing Species: Practical Taxonomic Procedure for Biologists. New York: Columbia University Press.Google Scholar
WireStrungharp: the complete resource for the wire-strung harp, 2010–2018. Irish and Highland Harps. www.wirestrungharp.com/harps/historic/downhill_table.html, accessed 20 July 2018.Google Scholar
Witovisk, L., Mendonça, J. O., Barbosa, T. S., Ramos, R. R. C., and Carvalho, M. A., 2014. Preparing blocks of fossil woods for fluorescence microscopy: technical note. IAWA Journal 35(1):3134.Google Scholar
Wohlleben, P., 2015. The Hidden Life of Trees: What They Feel, How They Communicate. Vancouver/Berkeley: Greystone Books.Google Scholar
Wood, V. S., 1981. Live Oaking: Southern Timber for Tall Ships. Annapolis, MD: Naval Institute Press.Google Scholar
Wood-Martin, W. G., 1983 [original 1886]. The Lake Dwellings of Ireland: Or Ancient Lacustrine Habitations of Erin, Commonly Called Crannogs. Dublin: Crannóg Editions, Beaver Row Press.Google Scholar
Worbes, M., 1995. How to measure growth dynamics in tropical trees: a review. IAWA Journal 16(4):337351.Google Scholar
Yamamoto, F., 1992. Effects of depth of flooding on growth and anatomy of stems and knee roots of Taxodium distichum. IAWA Bulletin n.s. 13(1):93104.Google Scholar
Yamamoto, F., and Kozlowski, T. T., 1987a. Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy and ethylene production of Pinus densiflora seedlings. Journal of Experimental Botany 38(187):293310.Google Scholar
Yamamoto, F., and Kozlowski, T. T. 1987b. Effects of flooding of soil on growth, stem anatomy, and ethylene production of Thuja orientalis seedlings. IAWA Bulletin n.s. 8(1):2129.Google Scholar
Yamamoto, F., and Kozlowski, T. T. 1987c. Effect of flooding of soil on growth, stem anatomy, and ethylene production of Cryptomeria japonica seedlings. Scandinavian Journal of Forest Research 2:4558.Google Scholar
Yamamoto, F., Kozlowski, T. T., and Wolter, K. E., 1987. Effect of flooding on growth, stem anatomy, and ethylene production of Pinus halepensis seedlings. Canadian Journal of Forest Research 17:6979.Google Scholar
Yamamoto, F., Sakata, T., and Terazawa, K., 1995. Growth, morphology, stem anatomy, and ethylene production in flooded Alnus japonica seedlings. IAWA Journal 16(1):4759.Google Scholar
Yanosky, T. M., 1983. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees. US Geological Survey Professional Paper 1296. Washington, DC: US Government Printing Office.Google Scholar
Yoshizawa, N., Watanabe, N., Yokota, S., and Idei, T., 1993. Distribution of guaiacyl and syringyl lignins in normal and compression wood of Buxus microphylla var. insularis Naki. IAWA Journal 14(2):139151.Google Scholar
Zajączkowska, U., 2014. Regeneration of Scots pine stem after wounding. IAWA Journal 35(3):270280.Google Scholar
Zhang, S. Y., Baas, P., and Zandee, M., 1992. Wood structure of the Rosaceae in relation to ecology, habitat, and phenology. IAWA Bulletin n.s. 13(3):307349.Google Scholar
Zimmerman, M. H., 1964. The Formation of Wood in Forest Trees. New York: Academic Press.Google Scholar
Zimmerman, M. H. 1983. Xylem Structure and the Ascent of Sap. Berlin, Heidelberg: Springer.Google Scholar
Zimmerman, M. H., and Brown, C. L., 1971. Trees, Structure and Function. Berlin, Heidelberg: Springer.Google Scholar
Zimmerman, M. R., 2012. The analysis and interpretation of mummified remains. In Grauer, A. L. (ed.), A Companion to Paleopathology. New York: John Wiley, pp. 152169.Google Scholar
Zucchelli, C., 2016. Sacred Trees of Ireland. Cork: The Collins Press.Google Scholar
Zutter, C., 2000. Wood and plant-use in 17th–19th century Iceland: archaeobotanical analysis of Reykholt, Western Iceland. Environmental Archaeology 5:7382.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Lee A. Newsom
  • Book: Wood in Archaeology
  • Online publication: 02 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781107280335.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Lee A. Newsom
  • Book: Wood in Archaeology
  • Online publication: 02 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781107280335.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Lee A. Newsom
  • Book: Wood in Archaeology
  • Online publication: 02 April 2022
  • Chapter DOI: https://doi.org/10.1017/9781107280335.012
Available formats
×