Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T01:32:25.030Z Has data issue: false hasContentIssue false

Part IV - Asia

Published online by Cambridge University Press:  03 August 2022

Bernardo Urbani
Affiliation:
Venezuelan Institute for Scientific Research
Dionisios Youlatos
Affiliation:
Aristotle University, Thessaloniki
Andrzej T. Antczak
Affiliation:
Universiteit Leiden
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
World Archaeoprimatology
Interconnections of Humans and Nonhuman Primates in the Past
, pp. 417 - 532
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Al-Rawi, F. N. H., & George, A. R. (2014). Back to the Cedar Forest: The beginning and end of Tablet V of the standard Babylonian Epic of Gilgameš. Journal of Cuneiform Studies, 66, 6990.Google Scholar
Barnett, R. D. (1973). Monkey business. Journal of the Ancient Near Eastern Society, 5, 110.Google Scholar
Battini, L. (2020). L’animal en collection au Proche-Orient ancien (IVe-Ier millénaire av. J.-C.). In Förstel, J. & Plouvier, M., eds., L’animal: un object d’étude, Paris: Éditions du Comité des travaux historiques et scientifiques, 113.Google Scholar
Beckman, G. (2013). Foreigners in the ancient Near East. Journal of the American Oriental Society, 133, 203215.Google Scholar
Buchanan, B. (1981). Early Near Eastern Seals in the Yale Babylonian Collection. New Haven and London: Yale University Press.Google Scholar
Cooper, J. S. (1983). The Curse of Agade. Baltimore and London: The Johns Hopkins University Press.Google Scholar
Dunham, S. (1985). The monkey in the middle. Zeitschrift für Assyriologie und Vorderasiatische Archäologie, 75, 234264.Google Scholar
Englund, R. K. (1998). Texts from the Late Uruk Period. In Attinger, P., & Wäfler, M., eds., Mesopotamien. Späturuk-Zeit und Frühdynastische Zeit (Orbis Biblicus et Orientalis 160/1), 15233. Freiburg and Göttingen: Universitätsverlag Freiburg Schweiz. Vandenhoeck & Ruprecht Göttingen.Google Scholar
Fink, S. (2016). Battle and war in the royal self-representation of the Ur III Period. In Kämmerer, Th.R., Köiv, M., & Sazonov, V., eds., Kings, Gods and People. Establishing Monarchies in the Ancient World (Alter Orient und Altes Testament 390/4), 109134. Münster: Ugarit-Verlag.Google Scholar
Frayne, D. R. (1997). Ur III Period (2112-2004 BCE). Vol. 3/2 of The Royal Inscriptions of Mesopotamia. Early Periods. Toronto, Buffalo and London: University of Toronto Press.Google Scholar
Gelb, I.J. (1957). Glossary of Old Akkadian. Vol. 3 of Materials for the Assyrian Dictionary. Chicago: The University of Chicago Press.Google Scholar
Heimpel, W. (2009). Workers and Construction Work at Garšana. Vol. 5 of Cornell University Studies in Assyriology and Sumerology. Bethesda: CDL Press.Google Scholar
Hilzheimer, F. (1932). Affe. In Ebeling, E., & Meissner, B., eds., Reallexikon der Assyriologie 1, 41-42. Berlin and Leipzig: Walter de Gruyter & Co.Google Scholar
Goetze, A. (1963). Šakkanakus of the Ur III Empire. Journal of Cuneiform Studies, 17, 131.Google Scholar
Harper, P.O., Aruz, J., & Tallon, F. (eds.) (1992). The Royal City of Susa. Ancient Near Eastern Treasures in the Louvre. New York: The Metropolitan Museum of Art.Google Scholar
Hattori, A. (2002). Texts and impressions: A holistic approach to Ur III Cuneiform tablets from the University of Pennsylvania expeditions to Nippur. PhD thesis, University of Pennsylvania.Google Scholar
Heeßel, N. P (2017). Mesopotamian Demons — Foreign and Yet Native Powers?. In Römer, Th., Dufour, B., Pfitzmann, F., & Uehlinger, Chr., eds., Entre dieux et hommes: anges, démons et autres figures intermédiaires. Actes du colloque organisé par le Collège de France, Paris, les 19 et 20 mai 2014, (Orbis Biblicus et Orientalis 286), 1529. Fribourg and Göttingen: Academic Press Fribourg. Vandenhoeck & Ruprecht Göttingen.Google Scholar
Klein, J. (1979). The reading and pronunciation of the Sumerian word for “monkey.” Journal of Cuneiform Studies, 31, 149160.CrossRefGoogle Scholar
Kleinerman, A. (2011). Education in Early 2nd Millennium BCE Babylonia. The Sumerian Epistolary Miscellany. Vol. 42 of Cuneiform Monographs. Boston: Brill.CrossRefGoogle Scholar
Kleinerman, A. & Owen, D.I. (2009). Analytical Concordance to the Garšana Archives. Vol. 4 of Cornell University Studies in Assyriology and Sumerology. Bethesda: CDL Press.Google Scholar
Mayr, R.H. (1996). Seal impressions on tablets from Umma. PhD thesis, University Leiden.Google Scholar
Michalowski, P. (2010). Learning music: Schooling, apprenticeship, and gender in Early Mesopotamia. In Pruzsinszky, R., & Shehata, D., eds., Musiker und Tradierung. Studien zur Rolle von Musikern bei der Verschriftlichung und Tradierung von literarischen Werken, (Wiener Offene Orientalistik 8), 199239. Wien and Berlin: LIT Verlag.Google Scholar
Michalowski, P. (2011). The Correspondence of the Kings of Ur. An Epistolary History of an Ancient Mesopotamian Kingdom. Vol. 15 of Mesopotamian Civilizations. Winona Lake: Eisenbrauns.Google Scholar
Potts, D. T. (1997). Mesopotamian Civilization. Ithaca: Cornell University Press.Google Scholar
Pruzsinszky, R. (2016). Musicians and monkeys: Ancient Near Eastern clay plaques displaying musicians and their socio-cultural role. In Bellia, A., & Marconi, Cl., eds., Musicians in Ancient Coroplastic Art. Iconography, Ritual Contexts, and Functions, (Telestes. Studi e Ricerche di Archeologia Musicale nel Mediterraneo 2), Pisa and Roma: Istituti editoriali e poligrafici internazionali, 2334.Google Scholar
Pruzsinszky, R. (2018). ‘‘The Poor Musician’’ in Ancient Near Eastern texts and images. In García-Ventura, A., Tavolieri, Cl., & Verderame, L., eds., The Study of Musical Performance in Antiquity: Archaeology and Written Sources. Newcastle upon Tyne: Cambridge Scholars Publishing, 3958.Google Scholar
Sallaberger, W. (1999). Ur III-Zeit. In Attinger, P., & Wäfler, M., eds., Mesopotamien. Akkade-Zeit und Ur III-Zeit, (Orbis Biblicus et Orientalis 160/3), Freiburg and Göttingen: Universitätsverlag Freiburg Schweiz. Vandenhoeck & Ruprecht Göttingen, 121390.Google Scholar
Stamm, J. J. (1939). Die akkadische Namengebung. Vol. 44 of Mitteilungen der Vorderasiatisch-Ägyptischen Gesellschaft (E. V.). Leipzig: J.C. Hinrichs Verlag.Google Scholar
Steinkeller, P. (2013). Corvée labor in Ur III times. In Garfinkle, S., & Molina, M., eds., From the 21st Century B.C. to the 21st Century A.D. Proceedings of the International Conference on Neo-Sumerian Studies Held in Madrid 22–24 July 2010, Winona Lake: Eisenbrauns Publishers, 347424.Google Scholar
Spycket, A. (1998). “Le Carnaval des Animaux”: On Some Musician Monkeys from the Ancient Near East. Iraq, 60, 110.CrossRefGoogle Scholar
Such-Gutiérrez, M. (2020). Year names as source for military campaigns in the third millennium BCE. In Luggin, J., & Fink, S., eds., Battle Descriptions as Literary Texts. A Comparative Approach, Wiesbaden: Springer VS, 929.CrossRefGoogle Scholar
van Buren, E. D. (1936–1937). Mesopotamian fauna in the light of the monuments. Archaeological remarks upon Landsberger’s “Fauna des alten Mesopotamien.Archiv für Orientforschung, 11, 137.Google Scholar

References

Aryan, K. (1994). Hanuman in Art and Mythology, Delhi: Rekha Prakashan.Google Scholar
Bleisch, B., Brockelman, W, Timmins, R. J., et al. (2020). Trachypithecus phayrei. The IUCN Red List of Threatened Species 2020: e.T22040A17960739.Google Scholar
Bracket, J. M. (2004). Practically Hindu: contemporary conceptions of Hanuman-Maruti in Maharashtra. PhD thesis, University of Pittsburgh.Google Scholar
Brown, R. L. (2009). Telling the story in art of the monkey’s gift of honey to the Buddha. Bulletin of the Asia Institute, New Series, 23, 4352.Google Scholar
Burlingame, E. W. (1921) Buddhist Legends: Translated from the Original Pali Text of the Dhammapada Commentary, Part 1, Cambridge, MA: Harvard University Press.Google Scholar
Chaturvedi, S. K., & Mishra, M. K. (2014). Study of man-monkey conflict and its management in Chitrakoot, Madhya Pradesh, India. International Journal of Global Science Research, 1(2), 107110.Google Scholar
Colding, J., & Folke, C. (2001). Social taboos: “invisible” systems of local resource management and biological conservation. Ecological Applications, 11(2), 584600.Google Scholar
Covill, L. (2007). Handsome Nanda by Ashva-ghosha, New York: Clay Sanskrit Library.Google Scholar
Cowell, E. B. Francis, H. T., & Neil, R. A. (1990). The Jātaka (or Stories of the Buddha’s Former Births), vols I to VI, First Indian Edition (reprint of 1897), New Delhi: Munishiram Manoharial Publishers.Google Scholar
Das, J., Medhi, R., & Molur, S. (2008a). Trachypithecus geei. The IUCN Red List of Threatened Species 2008: e.T22037A9348940.Google Scholar
Das, J., Molur, S., & Bleisch, W. (2008b). Trachypithecus pileatus. The IUCN Red List of Threatened Species 2008: e.T22041A9350087.Google Scholar
Dehejia, V. (1997a). Discourse in Early Buddhist Art: Visual Narratives of India, Delhi: Munshiram Manoharlal.Google Scholar
Dehejia, V. (1997b). Indian Art, London, New York: Phaidon.Google Scholar
Deva, K. (1974). Buddhist architecture in India. Bulletin of Tibetology, 11(3), 1228Google Scholar
Gnoli, R., & Venkatacharya, T. (1978). The Gilgit Manuscript of the Sanghabhedavastu: being the 17th and last section of the Vinaya of the Mūlasarvāstivādin. Vol. 49(2) of Serie Orientale. Roma: Istituto italiano per il medio ed estremo oriente.Google Scholar
Griffith, R. T. H. (1870–1874). The Rámáyan of Válmiki, Translated into English Verse, London: Trübner.Google Scholar
Hill, W. D. P. (1952). The Holy Lake of the Acts of Rama, Calcutta: Oxford University Press.Google Scholar
Huntington, S. L. (1985). The Art of Ancient India: Buddhist, Hindu, Jain, New York and Tokyo: Weatherhill.Google Scholar
Ireland, J. D. (1997). The Udāna, Inspired Utterances of the Buddha, & The Itivuttaka, The Buddha’s Sayings Translated from the Pāli, Kandy, Sri Lanka: Buddhist Publication Society.Google Scholar
IUCN (2020). The IUCN Red List of Threatened Species. Version 2020-2. Available at: www.iucnredlist.org (Accessed: 12 August 2020)Google Scholar
Kawasaki, K., & Kawasaki, V. (1998). Jataka Tales of the Buddha, Part III. Vol. 142 of Bodhi Leaves. Kandy, Sri Lanka: Buddhist Publication Society.Google Scholar
Khatun, U. H., Ahsan, M. F., & Roskaft, M. (2013). Local people’s perceptions of crop damage by common langurs (Semnopithecus entellus) and human-langur conflict in Keshabpur of Bangladesh . Environment and Natural Resources Research, 3(1), 111126.Google Scholar
Kirkpatrick, K. M. (1955). Aboriginal methods employed in killing and capturing game. Journal of the Bombay Natural History Society, 52(2–3), 285300.Google Scholar
Kumara, H. N., Kumar, A., & Singh, M. (2020). Semnopithecus entellus. The IUCN Red List of Threatened Species 2020: e.T39832A17942050.Google Scholar
Lutgendorf, P. (1994). My Hanuman is bigger than yours. History of Religions, 33(3), 211245.Google Scholar
Lutgendorf, P. (1997). Monkey in the middle: the status of Hanuman in popular Hinduism. Religion, 27, 311332.Google Scholar
Lutgendorf, P. (2001). Five heads and no tale: Hanumān and the popularization of Tantra. International Journal of Hindu Studies, 5(3), 269296.Google Scholar
Michell, G. (1988). The Hindu Temple: An Introduction to Its Meaning and Form, Chicago: University of Chicago Press.Google Scholar
Michell, G. (2000). Hindu Art and Architecture, New York: Thames and Hudson.Google Scholar
Molur, S., Brandon-Jones, D., Dittus, W., et al. (2003). Status of South Asian Primates: Conservation Assessment and Managment Plan Report. Workshop Report, 2003. Zoo Outreach Organization/CBSG-South Asia, Coimbatore, India.Google Scholar
Morgenroth, W. (1969). Shukhasaptati, Das Papageienbuch, München: Winkler-VerlagGoogle Scholar
Nagar, S. (2004). Hanuman: Through the Ages, 3 vols. Delhi: B.R. Publishing.Google Scholar
Narula, J. (2005). God and Epic Hero: The Origin and Growth of Hanuman in Indian Literary and Folk Tradition, New Delhi: Manohar.Google Scholar
Nowak, R. (1999). Walker’s Mammals of the World, 6th ed., 2 vols. Baltimore and London: The Johns Hopkins University Press.CrossRefGoogle Scholar
Olivelle, P. (1999). Pañchatantra: The Book of India’s Folk Wisdom, Oxford: Oxford University Press.Google Scholar
Olivelle, P. (2002). Food for thought. Dietary rules and social organization in ancient India. Gonda Lecture 9, Royal Netherlands Academy of Arts and Sciences, Amsterdam.Google Scholar
Osterholz, M., Walter, L., & Roos, C. (2008). Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evolutionary Biology, 8, 58.Google Scholar
Pocock, R. (1976). The Fauna of British India Including Ceylon and Burma. Mammalia—vol. 1, Primates and Carnivora (in part), Families Felidae and Viverridae, The Hague: W. Junk (reprint of London: Taylor and Francis, 1939).Google Scholar
Prater, S. (1971). The Book of Indian Animals, Bombay: Natural History Society.Google Scholar
Rudran, R., Dittus, W., Gamage, S. N., & Nekaris, K. A. I. (2020). Semnopithecus vetulus. The IUCN Red List of Threatened Species 2020: e.T22042A17959452.Google Scholar
Shulman, E. (2018). Aśvaghoṣa’s Viśeṣaka: The Saundarananda and Its Pāli “Equivalents.” Journal of Indian Philosophy, 47, 235256.CrossRefGoogle Scholar
Singh, M., Kumar, A., & Kumara, H. N. (2020a). Macaca mulatta. The IUCN Red List of Threatened Species 2020: e.T12554A17950825.Google Scholar
Singh, M., Kumara, H. N.,& Kumar, A. (2020b). Macaca radiata. The IUCN Red List of Threatened Species 2020: e.T12558A17951596.Google Scholar
Singh, M., Kumara, H. N., & Kumar, A. (2020c). Semnopithecus johnii. The IUCN Red List of Threatened Species 2020: e.T44694A17958623.Google Scholar
Tadgell, C. (1990). The History of Architecture in India: From the Dawn of Civilization to the End of the Raj, London: Architecture, Design, and Technology Press.Google Scholar
van der Geer, A. A. E. (2008). Animals in Stone. Indian Fauna Sculptured through Time. Vol. 21 of Handbook of Oriental Studies, Section 2 South Asia. Leiden: Brill.Google Scholar
Warder, A. K. (2000). Indian Buddhism, Delhi: Motilal Banarsidass.Google Scholar

References

Adikari, G. (1994a). Approach to the prehistory of the Sigiriya-Potana region cave complex. In Bandaranayake, Senake, & Mogren, Mats, eds., Further Studies in the Settlement Archaeology of the Sigiriya-Dambulla Region, Colombo: Post-graduate Institute of Archaeological Research, 4551.Google Scholar
Adikari, G. (1994b). Excavations at the Sigiriya-Potana cave complex: a preliminary account. In Bandaranayake, Senake, & Mogren, Mats, eds., Further Studies in the Settlement Archaeology of the Sigiriya-Dambulla Region, Colombo: Post-graduate Institute of Archaeological Research, 6568.Google Scholar
Adikari, G. (1998). Aspects of the prehistory of Sigiriya- Dambulla region. Unpublished MPhil thesis, University of Kelaniya.Google Scholar
Adikari, G. (2010). A preliminary excavation report submitted to the Postgraduate Institute of Archaeology Report. Colombo.Google Scholar
Bin Haji Taha, A. (1981). The re-excavation of the rockshelter of Gua Cha, Ulu Kelantan, West Malaysia. Unpublished Master’s thesis. The Australian National University.Google Scholar
Campbell-Smith, G., Simanjorang, H. V. P., Leader-Williams, N., & Linkie, M. (2010). Local attitudes and perceptions toward crop-raiding by orangutans (Pongo abelii) and other nonhuman NHP in northern Sumatra, Indonesia. American Journal of Primatology, 72, 866876.Google Scholar
Chandimal, K. M., Yasawardene, S. G., & Adikari, G. (2009) The determination of age, sex and stature of prehistoric human skeletal remains excavated from Sigiriya Potana in Sri Lanka. Colombo: Sri Lanka Association for the Advancement of Science Proceeding of the 65th Annual Sessions. Part I (Abstract, 416/D).Google Scholar
Clarkson, C., Petraglia, M., Korisettar, R., et al. (2008). The oldest and longest sequence in India: 35,000 years of modern human occupation and change at the Jwalapuram Locality 9 rockshelter. Antiquity, 83, 326348.Google Scholar
Deraniyagala, P. E. P. (1940). The Stone Age and cave men of Ceylon. Journal of the Royal Asiatic Society (Ceylon), 34(92), 351373.Google Scholar
Deraniyagala, P. E. P. (1943). Some aspect of the prehistory of Ceylon, pt.1. Spolia Zeylanica, 23(2), 93115.Google Scholar
Deraniyagala, P. E. P. (1958). Administration Report of the Director of National Museums for 1957, Sri Lanka Government.Google Scholar
Deraniyagala, S. U. (1971). Stone implements from a Balangoda Culture site in Ceylon: Bellan-bandi Palassa. Ancient Ceylon, 1, 4789.Google Scholar
Deraniyagala, S. U., & Kennedy, K. A. (1972). Bellan Bandi Pallassa 1970: A Mesolithic burial site in Ceylon. Ancient Ceylon, 2, 1847.Google Scholar
Deraniyagala, S. U. (1992). The Prehistory of Sri Lanka: An Ecological Perspective (2nd ed.). Colombo: Department of Archaeological Survey.Google Scholar
Deraniyagala, S. U. (2007). The prehistory and protohistoric settlement in Sri Lanka. In Prematilleke, P. L., Bandaranayake, S., Deraniyagala, S. U., & Siva, R., eds., The Art and Archaeology in Sri Lanka. Colombo: Central Cultural Fund, 1, 196.Google Scholar
Eragama, S. (2017). Subsistence pattern of the Prehistoric man from Kuragala Rockshelter in Sri Lanka, Unpublished MA thesis, University of Kelaniya.Google Scholar
Gunarathna, H. S. (1971). Beli-lena Athula: another Stone Age habitation in Ceylon. Spolia Zeylanica 32(1), 4.Google Scholar
Hathurusinghe, S. (2019). Archaeology of Kelani River Valley in Sri Lanka. Unpublished PhD Thesis, University of Kelaniya.Google Scholar
Higham, C. (2013). Hunter-gatherers in Southeast Asia: From prehistory to the present, Human Biology, 85 (1–3), 2144.CrossRefGoogle ScholarPubMed
Kourampas, N, Simpson, I, Perera, H. N., Deraniyagala, S. U., & Wijeyapala, W. H. (2009). Rockshelter sedimentation in a dynamic tropical landscape: Late Pleistocene-Early Holocene archaeological deposits in Kitulgala Beli-lena, Southwestern Sri Lanka, Geoarchaeology, 24(6), 677714.Google Scholar
Kourampas, N., Simpson, I., Diaz, A. P., Perera, N., & Deraniyagala, S. (2012). Geoarchaelogical reconnaissance rockshelter and tool bearing sediments of the Iranmadu Formation Rock shelter. Ancient Ceylon, 23, 125.Google Scholar
Kulatilake, S. (2016). The peopling of Sri Lanka from prehistoric to historic times: Biological and archaeological evidence. In Robbins Schug, G., & Walimbe, S. R. (eds.), A Companion to South Asia in the Past, Hoboken, NJ: John Wiley & Sons, Inc., 426436.Google Scholar
Langley, MC, Amano, N, Wedage, O, et al. (2020). Bows and arrows and complex symbolic displays 48,000 years ago in the South Asian tropics. Science Advances, 6, eaba3831Google Scholar
Nahallage, C. A. D. (2015). Craniometric analysis of two NHP species from Sri Lanka: Macaca sinica and Thrachypithecus vetulus. Man and Environment XL(1), 2732.Google Scholar
Nahallage, C. A. D., & Huffman, M. A. (2013). Macaque-human interactions in past and present-day Sri Lanka. In Radhakrishna, S., Huffman, M. A., & Sinha, A. The Macaque Connection: Cooperation and conflict between humans and macaques. New York: Springer, 135148.Google Scholar
Nahallage, C. A. D., Huffman, M. A., Kuruppu, N., & Weerasingha, T. (2008). Diurnal primates in Sri Lanka and people’s perception of them. Primate Conservation, 23(1), 8387.CrossRefGoogle Scholar
Nahallage, C. A. D., Kanthilatha, N., Adikari, G., & Huffman, M. A. (2010) Preliminary Report of nonhuman primate bones discovered at the prehistoric Sigiriya Potana cave site in Sri Lanka, Primate Research, 96, 247248.Google Scholar
Perera, H. N. (2010). Prehistoric Sri Lanka: Late Pleistocene Rockshelters and an Open Air Site. Oxford: Archaeopress.Google Scholar
Perera, N., Kaurampas, N., Simpson, I. A., et al. (2011). People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. Journal of Human Evolution, 61(3), 254269.Google Scholar
Perera, N., Roberts, P., & Petraglia, M. (2015). Bone technology in South Asia from Late Pleistocene rock shelter deposits in Sri Lanka. In Langley, M. C., ed., Osseous Projectile Weaponry: Towards an Understanding of Pleistocene Cultural Variability. New York: Springer.Google Scholar
Premathilake, R., & Gunatilaka, A. (2013). Chronological framework of Asian southwest monsoon events and variations over the past 24,000 years in Sri Lanka and regional correlations. Journal of the National Science Foundation Sri Lanka, 41(3), 219228.CrossRefGoogle Scholar
Ranasinghe, R., & Adikari, G. (2012). Importance of the analysis of animal bones for archaeological interpretation of prehistoric human subsistence patterns. Proceedings of the 1st International Conference of Humanities and Social Sciences. (November-18-19 2012), Nugegoda: University of Sri Jayewardenepura, 100.Google Scholar
Roberts, P., & Petraglia, M. (2015). Pleistocene rainforests: barriers or attractive environments for early human foragers? World Archaeology, 47(5), 718739.Google Scholar
Roberts, P., Boivin, N., & Petraglia, M. (2015a). The Sri Lanka in “Microlithic” tradition c. 38,000 to 3,000 years ago: Tropical technologies and adaptations of Homo sapiens at the southern edge of Asia. Journal of World Prehistory, 28(2), 69112.Google Scholar
Roberts, P., Perera, N., Oshan Wedage, O., et al. (2015b). Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science, 347(6227), 12461249.Google Scholar
Roberts, P., Perera, N., Wedage, O., et al. (2017). Fruits of the forest: Human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. Journal of Human Evolution, 106, 102118.Google Scholar
Riley, E. P., & Priston, N. E. (2010). Macaques in farms and folklore: Exploring the human-nonhuman primate interface in Sulawesi, Indonesia. American Journal of Primatology, 72, 848854.Google Scholar
Somadeva, R., Wanninayaka, A., & Devage, D. (2018). Hunters in transition: Advanced hunter-gatherers of the Mid/ Late Holocene, Sri Lanka. Man and Environment, XLIII (1), 2338.Google Scholar
Southwick, C., & Cadigan, F. C. Jr. (1972). Population studies of Malaysian primates. Primates, 13(1), 118.CrossRefGoogle Scholar
Swindler, D. R. (2002). Primate Dentition. An Introduction to the Teeth of Non-human Primates. Cambridge: Cambridge University Press.Google Scholar
Van Vlack, H. G. (2014). Forager subsistence regimes in the Thai-Malay Peninsula: An environmental archaeological case study of Khao Toh Chong rockshelter, Krabi. Unpublished Master’s thesis, San José State University.Google Scholar
Wedage, O., Amano, N., Langley, M. C., et al. (2019). Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Communications 10(739), 1234567890.Google Scholar
Wijeyapala, W. H. (1997). New light on the prehistory of Sri Lanka in the context of recent investigations of cave sites. Unpublished PhD thesis, University of Peradeniya.Google Scholar

References

Aimi, M. (1981). Fossil Macaca nemestrina (Linnaeus, 1976) from Java, Indonesia. Primates, 22(3), 409413.Google Scholar
Amano, N., Moigne, A. M., Ingicco, T., Sémah, F., Awe, R. D., & Simanjuntak, T. (2016). Subsistence strategies and environment in Late Pleistocene–Early Holocene Eastern Java: Evidence from Braholo Cave. Quaternary International, 416(1), 4663.Google Scholar
Barker, G. (2005). The archaeology of foraging and farming in Niah Cave, Sarawak. Asian Perspectives, 44(1), 90106.Google Scholar
Barker, G., & Farr, L. (eds.) (2016). Archaeological Investigations in the Niah Caves, Sarawak. McDonald Institute for Archaeological Research, Cambridge.Google Scholar
Barker, G., Barton, H., Bird, M., et al. (2007). The “human revolution” in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). Journal of Human Evolution, 52(3), 243226.Google Scholar
Barton, H. W., Piper, P. J., Rabett, R. J., & Reeds, I. (2009). Composite hunting technologies from the Terminal Pleistocene and Early Holocene, Niah Cave, Borneo. Journal of Archaeological Science, 36, 17081714.Google Scholar
Bellwood, P. (1997). Prehistory of the Indo-Malaysian Archipelago (revised edition). Honolulu: University of Hawai’i Press.Google Scholar
Bellwood, P. (2013). First Migrants: Ancient Migration in Global Perspective. Chichester: Wiley-Blackwell.Google Scholar
Birchette, M. G. (1982). The postcranial skeleton of Paracolobus chemeroni. PhD thesis, Harvard University .Google Scholar
Borries, C., Larney, E., Lu, A., Ossi, K., & Koenig, A. (2008). Costs of large groups: developmental and reproductive rates in wild Phayre’s leaf monkeys (Trachypithecus phayrei). In Proceedings of the 77th Annual Meeting of the American Journal of Physical Antropology 71.Google Scholar
Botes, I.Gh. (1926). Étude morphologique et morphogénique du squelette du bras et de l’avant-bras chez les primates. Libraire Octave Doin, Gaston Doin & cie, éditeurs. Paris.Google Scholar
Dam, R. A., Fluin, J., Suparan, P., & van der Kaars, S. (2001). Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33,000 yr BPPalaeogeography, Palaeoclimatology, Palaeoecology171(3), 147183.Google Scholar
Delson, E. (1973). Fossil Colobine monkeys of the Circum-Mediterranean Region and the evolutionary history of the Cercopithecidae (Primates, Mammalia). PhD thesis. Columbia University.Google Scholar
Détroit, F. (2006). Homo sapiens in Southeast Asian archipelagos: the Holocene fossil evidence with special reference to funerary practices in East Java. In Simanjuntak, T., Pojoh, M., & Hisyam, M., eds., Austronesian Diaspora and the Ethnogeneses of People in Indonesian Archipelago, Proceedings of the International Symposium. Jakarta: LIPI Press, 186204.Google Scholar
Dubois, N., Oppo, D. W., Galy, V. V., et al. (2014). Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 yearsNature Geoscience, 7(7), 513517.CrossRefGoogle Scholar
Groves, C. P. (1971). Systematics of the genus Nycticebus. In Taxonomy, Anatomy, Reproduction. Proceedings of the Third International Congress of Primatology 1, 4453.Google Scholar
Groves, C. P. (1998). Systematics of tarsiers and lorisesPrimates, 39(1), 1327.Google Scholar
Groves, C., & Maryanto, I. (2008). Craniometry of slow lorises (genus Nycticebus) of insular Southeast Asia. In Shekelle, M., Groves, C., Maryanto, I., Schulze, H., & Fitch-Snyder., H. Primates of the Oriental Night. Jakarta: LIPI Press, 115122.Google Scholar
Harrison, T., Krigbaum, J., & Manser, J. (2006). Primate biogeography and ecology on the Sunda Shelf Islands: a paleontological and zooarchaeological perspective. In Lehman, S. N., & Fleagle, J. G.. Primate Biogeography. New York: Springer, 331372.CrossRefGoogle Scholar
Ingicco, T. (2010). Les primates quaternaires de Song Terus (Java Est, Indonésie) implications paléobiogéographiques et archéozoologiques pour l’Asie du Sud-Est. Ph.D. thesis, Muséum national d’Histoire naturelle, Paris.Google Scholar
Ingicco, T., Moigne, A.-M., & Gommery, D. 2012. A deciduous and permanent dental wear stage system for assessing the age of Trachypithecus sp. specimens (Colobinae, Primates). Journal of Archaeological Science, 39, 421427.Google Scholar
Ingicco, T., Amano, N., Setiagama, K., et al. (2020). From food to grave good: Non-human primate exploitation in Early to Mid-Holocene Eastern Java (Indonesia). Current Anthropology, 61, 264277.Google Scholar
Jenkins, F. A. (1973). The functional anatomy and evolution of the mammalian humero‐ulnar articulationAmerican Journal of Anatomy, 137(3), 281297.Google Scholar
Ji, X., Youlatos, D., Jablonski, N. G., et al. (2020). Oldest colobine calcaneus from East Asia (Zhaotong, Yunnan, China), Journal of Human Evolution, 147, 113Google Scholar
Jolly, C. (1967). The evolution of the baboons. In Vartborg, H., ed., The Baboon in Medical Research. Vol. II. Austin: University of Texas Press, 427457.Google Scholar
Kershaw, A. P., van der Kaars, S., & Moss, P. T. (2001). Late Quaternary Milankovitch-scale climatic change and variability and its impact on monsoonal Australasia. Marine Geology, 201 (1–3), 8195.Google Scholar
Knussmann, R. (1967). Humerus, ulna and radius der Simiae. Bibliotheca Primatologica, vol. 5, Basel: Prager.Google Scholar
Kool, K. M. (1993). The diet and feeding behavior of the silver leaf monkey (Trachypithecus auratus sondaicus) in Indonesia. International Journal of Primatology, 14(5), 667700.CrossRefGoogle Scholar
Ky-Kidd, K., & Piper, P. (2004). Identification of morphological variation in the humeri of Bornean primates and its application to zooarchaeology. Archaeofauna, 13, 8595.Google Scholar
Langley, M. C., Amano, N., Wedage, O., et al. (2020). Bows and arrows and complex symbolic displays 48,000 years ago in the South Asian tropics. Science Advances, 6, eaba3831Google Scholar
Larson, S. G., & Stern, J. T. (1989). Role of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops): implications for interpretation of humeral morphologyAmerican Journal of Physical Anthropology79(3), 369377.Google Scholar
Lewis, H., Paz, V., Lara, M., et al. (2008). Terminal Pleistocene to mid-Holocene occupation and an early cremation burial at Ille Cave, Palawan, Philippines. Antiquity, 82(316), 318335.Google Scholar
Lucas, P. W., & Teaford, M. F. (1994). Functional morphology of colobine teeth. In Davies, G., & Oates, J., eds., Colobine Monkeys: Their Ecology, Behaviour and Evolution Cambridge: Cambridge University Press, 173–203.Google Scholar
Lucas, P. W., Corlett, R. T., & Luke, D. A. (1986). Postcanine tooth size and diet in anthropoid primatesZeitschrift für Morphologie und Anthropologie, 76(3), 253276.Google Scholar
Nekaris, K. A. I., & Jaffe, S. (2007). Unexpected diversity of slow lorises (Nycticebus spp.) within the Javan pet trade implications for slow loris taxonomyContributions to Zoology76(3), 187196.Google Scholar
Nekaris, K. A. I., Moore, R. S., Rode, E. J., & Fry, B. G. (2013). Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venomJournal of Venomous Animals and Toxins including Tropical Diseases19(1), 21.Google Scholar
Newsome, J., & Flenley, J. R. (1988). Late Quaternary vegetational history of the central highlands of Sumatra. II. Palaeopalynology and vegetational history. Journal of Biogeography, 1, 555578.Google Scholar
Nijman, V. (2000). Geographic distribution of ebony leaf monkey Trachypithecus auratusContributions to Zoology, 69(3), 157177.CrossRefGoogle Scholar
Nijman, V., & Van Balen, S. B. (1998). A faunal survey of the Dieng Mountains, Central Java, Indonesia: distribution and conservation of endemic primate taxaOryx32(02), 145156.Google Scholar
Lara, M., Paz, V., Lewis, H., & Solheim, W. (2015). Bone modifications in an Early Holocene cremation burial from Palawan, Philippines. International Journal of Osteoarchaeology, 25(5), 637652.Google Scholar
Lloyd-Smith, L. R. (2009). Chronologies of the dead: Later prehistoric burial practice at the Niah Caves, Sarawak. PhD thesis, University of Cambridge.Google Scholar
Maloney, B. K., & McCormac, F. G. (1995). A 30,000-year pollen and radiocarbon record from Highland Sumatra as evidence for climatic changeRadiocarbon, 37(02), 181190.Google Scholar
Maloney, B. K., & McCormac, F. G. (1996). Palaeoenvironments of North Sumatra: a 30,000-year-old pollen record from Pea BullokBulletin of the Indo-Pacific Prehistory Association14, 7382.CrossRefGoogle Scholar
Morwood, M. J., Sutikna, T., Saptomo, E. W., et al. (2008). Climate, people and faunal succession on Java, Indonesia: evidence from Song GupuhJournal of Archaeological Science, 35 (7), 17761789.Google Scholar
O’Connor, S. (2007). New evidence from East Timor contributes to our understanding of earliest modern human colonisation east of the Sunda ShelfAntiquity81(313), 523535.Google Scholar
O’Connor, S., Ono, R., & Clarkson, C. (2011). Pelagic fishing at 42,000 years before the present and the maritime skills of modern humansScience334(6059), 11171121.Google Scholar
Olivier, G., & Caix, M. (1959). L’humérus du Semnopithèque. Mammalia, 23(1), 7790.Google Scholar
Olivier, G., & Fenart, R. (1956). Les os de la jambe du Semnopithèque. Mammalia, 20(3), 249275.CrossRefGoogle Scholar
Olivier, G., & Fontaine, M. (1957). Les os du pied du Semnopithèque. Mammalia, 21(4), 142189.CrossRefGoogle Scholar
Olivier, G., & Piganiol, G. (1957). Le fémur du Semnopithèque. Mammalia, 21(4), 430451.Google Scholar
Olivier, G., & Soutoul, J. (1960). L’avant-bras du Semnopithèque. Mammalia 24(2), 228258.Google Scholar
Olivier, G., & Soutoul, J. (1961). Les os de la main du Semnopithèque. Mammalia, 25, 499527.Google Scholar
Pasveer, J. M. (2004). The Djief Hunters, 26,000 years of Rainforest Exploitation on the Bird’s Head of Papua, Indonesia. Modern Quaternary Research in Southeast Asia, volume 17. Rotterdam: Balkema.Google Scholar
Pawlik, A. F., Piper, P. J., Paylona, M. G. P., et al. (2014). Adaptation and foraging from the Terminal Pleistocene to the Early Holocene: Excavation at Bubog on Ilin Island, Philippines. Journal of Field Archaeology, 39(3), 230247.Google Scholar
Pawlik, A. F., Piper, P. J., Wood, R. E., et al. (2015). Shell tool technology in Island Southeast Asia: an early Middle Holocene Tridacna adze from Ilin Island, Mindoro, Philippines. Antiquity, 89(344), 292308.Google Scholar
Piper, P. J., & Rabett, R. J. (2009). Hunting in a tropical rainforest: evidence from the Terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. International Journal of Osteoarchaeology, 19(4), 551565.Google Scholar
Piper, P., & Rabett, R. (2016). Vertebrate fauna from the Niah Caves, In Barker, G., & Farr, L., eds., Archaeological Investigations in the Niah Caves, Sarawak. Cambridge: McDonald Institute for Archaeological Research, 401454.Google Scholar
Piper, P. J., Rabett, R. J., & Kurui, E. B. (2008). Using community, composition and structural variation in terminal Pleistocene vertebrate assemblages to identify human hunting behavior at Niah Caves, Borneo. Bulletin of the Indo-Pacific Prehistory Association, 28, 8898.Google Scholar
Preuschoft, H. (1969). Statische Untersuchungen am Fuß der Primaten. Zeitschrift für Anatomie und Entwicklungsgeschichte, 129, 285345Google Scholar
Rabett, R. J. (2005). The early exploitation of Southeast Asian mangroves: Bone technology from caves and open sites. Asian Perspectives, 44, 154179.Google Scholar
Rabett, R. J. (2012). Human Adaptation in the Asian Palaeolithic: Hominin Dispersal and Behaviour during the Late Quaternary. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rabett, R. J., & Piper, P. J. (2012). The emergence of bone technologies at the end of the Pleistocene in Southeast Asia: regional and evolutionary implications. Cambridge Archaeological Journal, 22, 3756.Google Scholar
Ravosa, M. J. (1998). Cranial allometry and geographic variation in slow lorises (Nycticebus)American Journal of Primatology, 45(3), 225243.Google Scholar
Richardson, M., Mittermeier, R. A., Rylands, A. B., & Konstant, B. (2008). Macaca nemestrina. The IUCN Red List of Threatened Species. Version 2015.1. Available from: www.iucnredlist.orgGoogle Scholar
Rose, M. D. (1983). Miocene hominoid postcranial morphology: monkey-like, ape-like, neither, or both? In Ciochon, R. L., & Corruccini, R. S., eds., New Interpretations of Ape and Human Ancestry. New York: Plenum Press, 405417.Google Scholar
Rose, M. D. (1988). Another look at the anthropoid elbow. Journal of Human Evolution, 17(1–2), 193224.CrossRefGoogle Scholar
Russell, J. M., Vogel, H., Konecky, B. L., et al. (2014). Glacial forcing of central Indonesian hydroclimate since 60,000 y BPProceedings of the National Academy of Sciences of the United States of America, 111(14), 51005105.Google Scholar
Sémah, F., Sémah, A.-M., Falguères, C., et al. (2004). The significance of the Punung karst area (Eastern Java) for the chronology of the Javanese Palaeolithic, with special reference to the Song Terus cave. In Keates, S. G., & Pasveer, J., eds., Modern Quaternary Research in Southeast Asia, vol. 18, Rotterdam: Balkema, 4561.Google Scholar
Senturia, S. J. (1995). Morphometry and allometry of the primate humerusPrimates 36(4), 523547.Google Scholar
Senut, B. (1986). Long bones of the primate upper limb: monomorphic or dimorphic? Human Evolution, 1(1), 7.CrossRefGoogle Scholar
Setiagama, F. K. (2006). L’industrie osseuse de l’horizon Keplek, Holocène de la grotte de Song Terus, Punung, Java Est (Indonésie). Master’s thesis, Muséum national d’Histoire naturelle.Google Scholar
Simanjuntak, T., & Asikin, I. N. (2004). Early Holocene human settlement in eastern Java. Bulletin of the Indo-Pacific Prehistory Association, 2, 1319.Google Scholar
Supriatna, J., & Wahyono, E. H. (2000). PanduanLapangan Primata Indonesia. Jakarta:Yaysan Obor Indonesia.Google Scholar
Swindler, D. R. (2002). Primate Dentition. An Introduction to the Teeth of Non-human Primates. Cambridge, UK: Cambridge University Press.Google Scholar
Szabó, K., Brumm, A., Bellwood, P., et al. (2007). Shell artefact production at 32,000–28,000 BP in Island Southeast Asia: thinking across media? Current Anthropology48(5), 701723.Google Scholar
van den Bergh, G. D., de Vos, J., & Sondaar, P. Y. (2001). The Late Quaternary palaeogeography of mammal evolution in the Indonesian ArchipelagoPalaeogeography, Palaeoclimatology, Palaeoecology171(3), 385408.Google Scholar
van der Kaars, W. A. (1998). Marine and terrestrial pollen records of the last glacial cycle from the Indonesian region: Bandung Basin and Banda Sea. Palaeoclimates, 3, 209219.Google Scholar
van der Kaars, W. A., & Dam, M. A. C. (1995). A 135,000-year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 117(1–2), 5572.Google Scholar
van der Kaars, W. A., Wang, X., Kershaw, P., Guichard, F., & Setiabudi, D. A. (2000). A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(1–2), 135153.Google Scholar
Washburn, S. L. (1942). Skeletal proportions of adult langurs and macaques, Human Biology, 14(4), 444472.Google Scholar
Wedage, O., Amano, N., Langley, M. C., et al. (2019). Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Commications, 10(1), 739.Google Scholar
Wedage, O., Roberts, P., Faulkner, P., et al. (2020). Late Pleistocene to early-Holocene rainforest foraging in Sri Lanka: Multidisciplinary analysis at Kitulgala Beli-lena. Quaternary Science Reviews, 231, 106200.Google Scholar
Willis, M. S., & Swindler, D. R. (2004). Molar size and shape variations among Asian colobines. American Journal of Physical Anthropology, 125(1), 5160.Google Scholar
Wirdateti, , Okayama, T., & Kurniati, H. (2006). Genetic diversity of slow loris (Nycticebus coucang) based on mitochondrial DNATropics15(4), 377381.Google Scholar
Wirdateti, , Dahrudin, H., & Sumadidjaya, A. (2011). Distribution and habitat of Javan Loris (Nycticebus javanicus) in plantations at Lebak District and Salak Mount (West Java)Journal Zoo Indonesia20(1), 1726.Google Scholar
Wurster, C. M., Bird, M. I., Bull, I. D., et al. (2010). Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proceedings of the National Academy of Sciences of the United States of America, 107 (35), 1550815511.Google Scholar
Yeager, C. P., & Kirkpatrick, R. C. (1998) Asian colobine social structure: ecological and evolutionary constraints. Primates, 39(2), 147.Google Scholar
Youlatos, D. (2003). Calcaneal features of the Greek Miocene primate Mesopithecus pentelicus (Cercopithecoidea: Colobinae). Geobios, 36(2), 229239.Google Scholar

References

An, Z, S, Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature, 411(6833), 6266.Google Scholar
Arthur, W. (1943). Monkey. New York: Grove Press.Google Scholar
Bosboom, R. E., Dupont-Nivet, G., Houben, A. J. P., et al. (2011). Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 385398.Google Scholar
Bowen, G. J., Clyde, W. C., Koch, P. L., et al. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science, 295, 20622065.Google Scholar
Brumm, A., Jensen, G. M., van den Bergh, G. D., et al. (2010). Hominins on Flores, Indonesia, by one million years ago. Nature, 464, 748752.Google Scholar
Cang, M. (1997). On the Migration Culture of the Ethnic Groups in Yunnan. [In Chinese]. Kunming, China: The Nationalities Publishing House of Yunnan.Google Scholar
Chaimanee, Y., Suteethorn, V., Jintasakul, P., et al. (2004). A new orang-utan relative from the Late Miocene of Thailand. Nature, 427, 439441.Google Scholar
Chang, C. H., Takai, M., & Ogino, S. (2012). First discovery of colobine fossils from the early to middle Pleistocene of southern Taiwan. Journal of Human Evolution, 63, 439451.Google Scholar
Chatterjee, H. (2009). Evolutionary relationships among the gibbons: A biogeographic perspective. In The Gibbons New Perspectives on Small Ape Socioecology and Population Biology, ed. Lappan, S., & Whittaker, D. J.. Springer ScienceþBusiness Media, LLC, 2549.Google Scholar
Chen, S. Q., Hu, Y., Xie, L., & Zhou, C., (2007). Origin of Tibeto-Burman speakers: evidence from HLA allele distribution in Lisu and Nu inhabiting Yunnan of China. Human Immunology, 68(6), 550559.Google Scholar
Curnoe, D., Xueping, J., Herries, A. I., & Kanning, B. (2012). Human remains from the Pleistocene-Holocene transition of southwest China suggest a complex evolutionary history for East Asians. PLoS ONE, 7, e31918.Google Scholar
Cyranoski, D. (2016). Monkey kingdom. Nature, 532(7599), 300302.Google Scholar
Dong, W., Liu, J., & Fang, Y. (2013). The large mammals from Tuozidong (eastern China) and the Early Pleistocene environmental availability for early human settlements. Quaternary International, 295, 7382.Google Scholar
Fan, Z., & Song, Y. (2003). Chinese primate status and primate captive breeding for biomedical research in China. In International Perspectives: The Future of Nonhuman Primate Resources: Proceedings of the Workshop Held April 17–19, (2002), ed. U.S. Institute for Laboratory Animal Research. Washington, D.C.: The National Academies Press. 3645.Google Scholar
Gabbott, S. E., Hou, X. Q. Norry, M. J., & Siveter, D. J. (2004). Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32(10), 901904.Google Scholar
Grehan, J. R., & Schwartz, J. H. (2009). Evolution of the second orangutan: phylogeny and biogeography of hominid origins. Journal of Biogeography, 36(10), 18231844.Google Scholar
Hao, X. (2007). Monkey research in China: developing a natural resource. Cell, 129(6), 10331036.CrossRefGoogle Scholar
Harrison, T. (2005). The zoogeographic and phylogenetic relationships of early catarrhine primates in Asia. Anthropological Science, 113(1), 4351.Google Scholar
Harrison, T. (2016). The fossil record and evolutionary history of Hylobatids. In Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects., ed. Reichard, U. H., & Barelli, C., New York: Springer, 91110.Google Scholar
Harrison, T., Jin, C., Zhang, Y., et al. (2014). Fossil Pongo from the Early Pleistocene Gigantopithecus fauna of Chongzuo, Guangxi, southern China. Quaternary International, 354, 5967.Google Scholar
Hou, X. G. (2016). New rare bivalved arthropods from the Lower Cambrian Chengjiang fauna, Yunnan, China. Journal of Paleontology, 73(1), 102116.Google Scholar
Hou, X., Siveter, D., Aldridge, R., et al. (2017). The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life, 2nd ed. Hoboken: John Wiley & Sons Ltd.Google Scholar
Hyodo, M., Nakaya, H., Urabe, A., et al. (2002). Paleomagnetic dates of hominid remains from Yuanmou, China, and other Asian sites. Journal of Human Evolution, 43(1), 2741.Google Scholar
Jablonski, N. G. (1998). The response of catarrhine primates to pleistocene environmental fluctuations in East Asia. Primates, 39(1), 2937.Google Scholar
Jablonski, N. G. (2002). Fossil Old World monkeys: the late Neogene radiation. In Hartwig, W. C., eds., The Primate Fossil Record. Cambridge: Cambridge University Press, 255299Google Scholar
Jablonski, N. G., & Chaplin, G. (2009). The fossil record of gibbons. In Lappan, S., & Whittaker, D. L., ed., The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology New York: Springer, 111130Google Scholar
Jablonski, N. G., & Tyler, D. E. (1999). Trachypithecus auratus sangiranensis: A new fossil monkey from Sangiran, Central Java, Indonesia. International Journal of Primatology, 20(1), 319326.Google Scholar
Jablonski, N. G., Ji, X. P., Kelley, J., et al. (2020). Mesopithecus pentelicus from Zhaotong, China, the easternmost representative of a widespread Miocene cercopithecoid species. Journal of Human Evolution, 146:102851.Google Scholar
Jaeger, J. J., So, A. N., Chavasseau, O., et al. (2011). First hominoid from the Late Miocene of the Irrawaddy Formation (Myanmar). PLoS ONE, 6, e17065.Google Scholar
Ji, X. (2014). Encyclopedia of Global Archaeology. New York: Springer Science+Business Media.Google Scholar
Ji, X. P., Jablonski, N. G., Su, D. F., et al. (2013). Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chinese Science Bulletin, 58, 37713779.Google Scholar
Ji, X., Curnoe, D., Taço, P., et al. (2016a). Cave use and palaeoecology at Maludong (Red Deer Cave), Yunnan, China. Journal of Archaeological Science: Reports, 8, 277283.Google Scholar
Ji, X., Kuman, K., Clarke, R. J., et al. (2016b). The oldest Hoabinhian technocomplex in Asia (43.5 ka) at Xiaodong rockshelter, Yunnan Province, southwest China. Quaternary Internationa,l 400, 166174.Google Scholar
Ji, X. P., Youlatos, D., Jablonski, N. G., et al. (2020). Oldest colobine calcaneus from East Asia (Zhaotong, Yunnan, China). Journal of Human Evolution, 147, 102866.Google Scholar
Jiang, Z., Meng, Z., Zeng, Y., et al. (2008). CITES no-detrimental finding for exporting rhesus monkeys (Macaca mulatta) from China. NDF Workshop case study. WG5-Mammals, 6, 115.Google Scholar
Jin, J. (2010). Zooarchaeological and taphonomic analysis of the faunal assemblage from Tangzigou, Southwestern China. PhD dissertation, Pennsylvania State University.Google Scholar
Jin, J. H., Jablonski, N. G., Flynn, L. J., et al. (2012). Micromammals from an early Holocene archaeological site in southwest China: Paleoenvironmental and taphonomic perspectives. Quaternary International, 281, 5865.Google Scholar
Kelley, J., & Gao, F. (2012). Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proceedings of the National Academy of Sciences of the United States of America, 109, 68826885.Google Scholar
Larick, R., Ciochon, R. L., Zaim, Y., et al. (2001). Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 48664871.Google Scholar
Li, J., Zeng, W., Zhang, Y., et al. (2017). Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese. BMC Evolutionary Biology, 17, 239.Google Scholar
Li, B. G., Li, M., Li, J. H., et al. (2018). The primate extinction crisis in China: immediate challenges and a way forward. Biodiversity and Conservation, 27, 33013327.Google Scholar
Li, B. G., He, G., Guo, S. T., et al. (2020). Macaques in China: Evolutionary dispersion and subsequent development. American Journal of Primatology, 82(7), e23142.Google Scholar
Li, X. (2003). The historical and cultural features of the Zang (Tibetan)-Yi Corridor. Forum on Chinese Culture, 45.Google Scholar
Liu, W., Gao, F., & Zheng, L. (2002). The diet of the Yuanmou Hominoid, Yunnan Province, China: An analysis from tooth size and morphology. Anthropological Science, 110, 149163.Google Scholar
Liu, Y. & Li, W. (2013). A comparison of the themes of The Journey to the West and The Pilgrim’s Progress. Theory and Practice in Language Studies, 3(7), 12431249.Google Scholar
Lou, H. (2016). A comparative study of the Chinese trickster hero Sun Wukong. Master’s thesis Duke University.Google Scholar
Lu, H., Jiang, D., Motani, R., et al. (2018). Middle Triassic Xingyi Fauna: Showing turnover of marine reptiles from coastal to oceanic environments. Palaeoworld, 27(7), 107116.Google Scholar
Luo, L., Granger, D. E., Tu, H., et al. (2020). The first radiometric age by isochron 26Al/10Be burial dating for the Early Pleistocene Yuanmou hominin site, southern China. Quaternary Geochronology, 55, 101022.Google Scholar
Ma, S. (1979). Probe on the Chinese origin of gibbons (Hylobates). Acta Theriologica Sinica, 17, 1323.Google Scholar
Marwick, B. (2009). Biogeography of Middle Pleistocene hominins in mainland Southeast Asia: A review of current evidence. Quaternary International, 202, 5158.Google Scholar
Meldrum, D. J., & Pan, Y. (1988). Manual proximal phalanx of Laccopithecus robustus from the Latest Miocene site of Lufeng. Journal of Human Evolution, 17, 719731.Google Scholar
Mishra, S., Gaillard, C., Hertler, C., et al. (2010). India and Java: Contrasting records, intimate connections. Quaternary International, 223 -224, 265270.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., et al. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853858.Google Scholar
Ni, X., Wang, Y., Hu, Y., & Li, C. (2004). A euprimate skull from the early Eocene of China. Nature, 427,(6969), 6568.Google Scholar
Ni, X., Gebo, D., Dagosto, M., et al. (2013). The oldest known primate skeleton and early haplorhine evolution. Nature, 498(7452), 6064.Google Scholar
Nishimura, T. D., Takai, M., Senut, B., et al. (2012). Reassessment of Dolichopithecus (Kanagawapithecus) leptopostorbitalis, a colobine monkey from the Late Pliocene of Japan. Journal of Human Evolution, 62, 548561.Google Scholar
Ni, Q., Wang, Y., Weldon, A., et al. (2018). Conservation implications of primate trade in China over 18 years based on web news reports of confiscations. PeerJ, 6, e6069.Google Scholar
Ortiz, A., Pilbrow, V., Villamil, C., et al. (2015). The taxonomic and phylogenetic affinities of Bunopithecus sericus, a fossil hylobatid from the Pleistocene of China. PLoS ONE, 10, e0131206.Google Scholar
Ortiz, A., Zhang, Y. Q., Jin, C. Z., et al. (2019). Morphometric analysis of fossil hylobatid molars from the Pleistocene of southern China. Anthropological Science, 127(2), 109121.Google Scholar
Pan, R., Peng, Y., Zhang, X., & Pan, R. (1992). Cercopithecid fossils discovered in Yunnan and its stratigraphical significance Acta Anthropologica Sinica, 11(4), 303311.Google Scholar
Pan, R. L., Oxnard, C. C., Gruete, C. C., et al. (2016). A new conservation strategy for China-A model starting with primates. American Journal of Primatology, 78(11), 11371148.Google Scholar
Petraglia, M. D. (2010). The Early Paleolithic of the Indian Subcontinent: Hominin colonization, dispersals and occupation history. In Fleagle, J. G., et al., eds., Out of Africa I: The First Hominin Colonization of Eurasia, Vertebrate Paleobiology and Paleoanthropology, Dordrecht: Springer Science+Business Media, 165179.Google Scholar
Potts, R., & Teague, R. (2010). Behavioral and environmental background to ‘Out-of-Africa I’ and the arrival of Homo erectus in East Asia. In Fleagle, J. G., et al., eds., Out of Africa I: The First Hominin Colonization of Eurasia, Vertebrate Paleobiology and Paleoanthropology, London and New York: Springer Science+Business Media B.V., 6785.Google Scholar
Qi, G., Dong, W., Zheng, L., et al. (2006). Taxonomy, age and environment status of the Yuanmou hominoids. Chinese Science Bulletin, 51, 704712.Google Scholar
Qiu, J. (2016). The forgotten continent, fossil finds in China are challenging ideas about the evolution of modern humans and our closest relatives. Nature, 535(7611), 218220.Google Scholar
Qiu, Z., & Li, C. (2005). Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau. Science in China Series D, 48, 12461258.Google Scholar
Roos, C., Kothe, M., Alba, D. M., et al. (2019). The radiation of macaques out of Africa: Evidence from mitogenome divergence times and the fossil record. Journal of Human Evolution, 133, 114132.Google Scholar
Roos, C., Zinner, D., Kubatko, L. S., et al. (2011). Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 11, 77.Google Scholar
Schick, K., & Zhuan, D. (2005). Early paleolithic of China and eastern Asia. Evolutionary Anthropology, 2(1), 2235.Google Scholar
Shen, T. (2017). Recognition of symbols in different cultures: Chinese culture vs. non-Chinese culture. Master’s thesis, Iowa State University.Google Scholar
Shi, S. (2000). The historical changes and features of the ethnic corridor in the western part of Sichuan Province. Tian Fu New Idea, 90, 9093.Google Scholar
Shu, D. G., Morris, S. C., Han, J., et al. (2001). Primitive deuterostomes from the Chengjiang LagerstaÈtte (Lower Cambrian, China). Nature, 414( 6862), 419424.Google Scholar
Shunkov, M. V., & Derevyanko, A. R. (2016). Where has Homo sapience come from? In Science First Hand, 49, Art. 2.Google Scholar
Sonakia, A., & Biswas, B. (1998). Antiquity of the Narmada Homo erectus, the early man of India. Current Science, 75(4), 391393.Google Scholar
Stewart, C. B., & Disotell, T. R. (1998). Primate evolution in and out of Africa. Current Biology, 8(4), 582588.Google Scholar
Su, B., Xiao, J., Underhill, P., et al. (1999). Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age. American Journal of Human Genetics, 65(6), 17181724.Google Scholar
Sun, H., Zhou, C., Huang, X., et al. (2013). Autosomal STRs provide genetic evidence for the hypothesis that Tai people originate from southern China. PLoS ONE, 8, e60822.Google Scholar
Taçon, P., Tan, N., O’Connor, S., et al. (2015). The global implications of the early surviving rock art of greater Southeast Asia. Antiquity, 88(342), 10501064.Google Scholar
Takai, M., Nishioka, Y., Thaung, H., et al. (2015a). Late Pliocene Semnopithecus fossils from central Myanmar: rethinking of the evolutionary history of cercopithecid monkeys in Southeast Asia. Historical Biology, 28(1–2), 172188.Google Scholar
Takai, M., Thaung, H., Zin Maung Maung, T., et al. (2015b). First discovery of colobine fossils from the Late Miocene/Early Pliocene in central Myanmar. Journal of Human Evolution, 84, 115.Google Scholar
Tyler, D. E. (1993). The evolutionary history of the gibbon. In Evolving Landscapes and Evolving Biotas of East Asia since the Mid-Tertiary,. In Jablonski, N. G., & Chak-Lam, So, eds., Hong Kong: University of Hong Kong, 228240Google Scholar
van den Bergh, G. D., Kaifu, Y., Kurniawan, I., et al. (2016). Homo floresiensis-like fossils from the early Middle Pleistocene of Flores. Nature, 534(7606), 245248.Google Scholar
Wang, J., Wu, R., He, D., et al. (2018a). Spatial relationship between climatic diversity and biodiversity conservation value. Conservation Biology, 32(6), 12661277.Google Scholar
Wang, N. S. (1984). An introduction to rock painting in Yunnan Province. Rock Art Research, 1, 7584.Google Scholar
Wang, M., Wang, Z., He, G., et al. (2018b). Genetic characteristics and phylogenetic analysis of three Chinese ethnic groups using the Huaxia Platinum System. Scientific Reports, 8, 2429.Google Scholar
Wedage, O., Amano, N., Langley, M. C., et al. (2019). Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Communications, 10, 739.Google Scholar
Wen, R. (2009). The Distribution and Changes of Rare Wild Animals in China. Shandong: Academic Press of Shandong. [In Chinese]Google Scholar
Wen, R. (2013). Geographical Distribution of Wild Animals in Ancient China. Jinan: Academic Press in Shandong. [In Chinese]Google Scholar
Wu, Z. H., Ye, P. S., Barosh, P. J. et al. (2013). Early Cenozoic multiple thrust in the Tibetan Plateau. Journal of Geological Research, 2013, 112.Google Scholar
Xin, S. (2018). The monkey in Chinese culture. Youlin Magazine, A Culture Journal.Google Scholar
Xing, S., Martinon-Torres, M., & Bermudez de Castro, J. M. (2018). The fossil teeth of the Peking Man. Scientific Reports, 8, 2066.Google Scholar
Xing, Y., & Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 114, E3444E3451.Google Scholar
Xu, J. C., Grumbine, R. E., & Beckschäfer, P. (2014). Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecological Indicators, 36, 749756.Google Scholar
Yang, Y. M., Tian, K., Hao, J. M., et al. (2004). Biodiversity and biodiversity conservation in Yunnan, China. Biodiversity and Conservation, 13, 813826.Google Scholar
Yao, Y., Zhang, B., Han, F., & Pang, Y. (2010). Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China. Journal of Mountain Science, 7(2), 123132.Google Scholar
Yao, Y. F., Bruch, A. A., Cheng, Y. M., et al. (2012). Monsoon versus uplift in southwestern China--Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE, 7, e37760.Google Scholar
Yao, Y. G., & Zhang, Y. P. (2002). Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. Journal of Human Genetics, 47(6), 311318.CrossRefGoogle Scholar
Yao, Y. G., Nie, L., Harpending, H., et al. (2002). Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. American Journal of Physical Anthropology, 118(1), 6376.Google Scholar
Ying, J. (2001). Species diversity and distribution pattern of seed plants in China. Chinese Biodiversity, 9(4), 393398.Google Scholar
Zhang, D., Fengquan, L., & Jianmin, B. (2000). Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. Environmental Geology 39(12), 13521359.Google Scholar
Zhang, J., & Cao, M. (1995). Tropical forest vegetation of Xishuangbanna, SW China and its secondary changes, with special reference to some problems in local nature conservation. Biological Conservation, 73(3), 229238.Google Scholar
Zhang, X., Gen, D., & Liu, H. (1992). Early Holocene mammal fauna from Tangzigou. In Baoshan Prehistoric Archaeology Kunming, China: Yunnan Science and Technology Press. [In Chinese]Google Scholar
Zhang, X., Ji, X., & Shen, G. (2004). U-series dating on fossil teeth from Xianren Cave in Xichou, Yunnan Province. Acta Anthropologica Sinica, 23, 8892.Google Scholar
Zhang, X. L., Shu, D. G., Li, Y., & Han, J. (2001). New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. Journal of the Geological Society, 158, 211218.Google Scholar
Zhang, Z. (2006). Chinese Late Neogene land mammals comunity and the envronmental changes of East Asia. Vertebrata PalAsiatica, 44(2), 133142.Google Scholar
Zhao, F. C., Hu, S. X., Caron, J. B., et al. (2012). Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 346 –347, 5465.Google Scholar
Zhao, J., Yuan, X., Liu, H., et al. (2010). The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America 107, 1122911233.Google Scholar
Zhao, X., Ren, B., Garber, P. A., et al. (2018). Impacts of human activity and climate change on the distribution of snub-nosed monkeys in China during the past 2000 years. Diversity and Distributions, 24(1), 92102.Google Scholar
Zhu, R. X., Potts, R., Pan, Y. X., et al. (2008). Early evidence of the genus Homo in East Asia. Journal of Human Evolution, 55, 10751085.Google Scholar
Zhu, Z., Dennell, R., Huang, W., et al. (2018). Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature, 559 (7715), 608612.Google Scholar

References

Anezaki, T., Hongo, H., & Shigehara, N. (2006). A morphometric analysis of the Japanese macaque (Macaca fuscata) mandibular cheek teeth from the Torihama Shell-midden, Early Jomon Period, Fukui Prefecture, Japan. Primates, 47, 255263.Google Scholar
Anthropology and Archaeology Research Group for Nojiri-ko Excavation (1990). Palaeolithic bone tools from the 10th excavation season at Tategahana, Lake Nojiri, Central North Japan. The Quaternary Research, 29, 89103.Google Scholar
Asahara, M., & Nishioka, Y. (2017). Geographic variation of absolute and relative lower sizes in the Japanese macaque (Macaca fuscata: Primates, Mammalia). Zoological Science, 34, 3541.Google Scholar
Delson, E. (1980). Fossil macaques, phyletic relationships and a scenario of deployment. In Lindberg, D. G., ed., The Macaques: Studies in Ecology, Behavior and Evolution. New York, NY: Van Nostrand Reinhold Company, 1030.Google Scholar
Dobson, M., & Kawamura, Y. (1998). Origin of the Japanese land mammal fauna: allocation of extant species to historically-based categories. The Quaternary Research, 37(5), 385395.Google Scholar
Endo, H. (2009). Macaca fuscata Swinhoe, 1863. In Ohdachi, S. D., Ishibashi, Y., Iwasa, M. A., & Saitoh, T., eds., The Wild Mammals of Japan. Kyoto: Shoukadoh, 128130.Google Scholar
Fa, J. E. (1989). The genus Macaca: a review of taxonomy and evolution. Mammal Review, 19(2), 4581.Google Scholar
Fan, Z., Zhou, A., Osada, N., et al. (2018). Ancient hybridization and admixture in macaques (genus Macaca) inferred from whole genome sequences. Molecular Phylogenetics and Evolution, 127, 376–86.Google Scholar
Fooden, J. (1980). Classification and distribution of living macaques (Macaca Lacépédem 1799). In Lindberg, D. G., ed., The Macaques: Studies in Ecology, Behavior and Evolution. New York: Van Nostrand Reinhold Company, 19.Google Scholar
Fooden, J., & Aimi, M. (2005). Systematic review of Japanese macaques, Macaca fuscata (Gray, 1870). Fieldiana Zoology (New Series), 104, 1200.Google Scholar
Fujita, M., & Kawamura, Y. (1997). Preliminary report on the size changes in Late Pleistocene to Holocene middle and large mammals from the Taishaku kyo sites, Hiroshima Prefecture, west Japan. Annual Bulletin of Hiroshima University Taishaku-Kyo Sites Research Centre, 12, 143154. [In Japanese]Google Scholar
Hamada, Y., Watanabe, T., & Iwamoto, M. (1996). Morphological variations among local populations of Japanese macaque (Macaca fuscata). In Shotake, T., & Wada, K., eds., Variations in the Asian Macaques. Tokyo: Tokai University Press, 97115.Google Scholar
Hasebe, K. (1924). Japanese monkeys in the Stone Age of Japan. The Journal of the Anthropological Society of Nippon, 39, 217218. [In Japanese]Google Scholar
Hasegawa, Y. (1966). Quaternary smaller mammalian fauna from Japan. Fossils, 11, 3140. [In Japanese]Google Scholar
Hasegawa, Y. (2009). Fauna of Quaternary mammals based on mammalian fossils found in limestone caves and fissure deposits of the Akiyoshi-dai Plateau. Mammalian Science, 49, 97100. [In Japanese]Google Scholar
Hasegawa, Y., Yamauti, H., & Okafuji, G. (1968). A fossil assemblage of Macaca and Homo from Ojikado-Cave of Hiraodai Karst Plateau, northern Kyushu, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 69, 218229.Google Scholar
Hongo, H., Fujita, M., & Matsui, A. (2002). Change of distribution of Japanese macaques from archaeological sites in Japan. Asian Paleoprimatology, 2, 112. [In Japanese]Google Scholar
Ito, T., Lee, Y., Nishimura, T. D., Tanaka, M., Woo, J., & Takai, M. (2018). Phylogenetic relationship of a fossil macaque (Macaca cf. robusta) from the Korean Peninsula to extant species of macaques based on zygomaxillary morphology. Journal of Human Evolution, 119, 113.Google Scholar
Iwamoto, M. (1975). On a skull of a fossil macaque from the Shikimizu Limestone Quarry in the Shikoku District, Japan. Primates, 16(1), 8394.Google Scholar
Iwamoto, M. (1981). Remains of the Japanese monkey (Macaca fuscata) from Takaga-ana Limestone Cave in Akiyoshi-dai District, Japan. Bulletin of Nishi Akiyosi-dai Takaga-ana Limestone Cave Research 1981, 159–66. [In Japanese with English summary]Google Scholar
Iwamoto, M. (1991). Fossil macaques from Fujisawa and Kisarazu, Kanto district, Japan. Primate Research, 7, 96102. [In Japanese with English abstract]Google Scholar
Iwamoto, M., & Hasegawa, Y. (1972). Two macaque fossil teeth from the Japanese Pleistocene. Primates, 13(1), 7781.Google Scholar
Iwamoto, M., & Takai, F. (1972). The Pleistocene macaque from the Tokai District, Japan—morphological consideration mainly from the tooth-size—. Journal of the Anthropological Society of Nippon, 80(1), 110. [In Japanese with English abstract]Google Scholar
Kaneko, H. (1968). Animal remains from Shomyoji D Shell Mound. Musashino, 47(2, 3), 5161. [In Japanese].Google Scholar
Kaneko, H. (1984). Archaeology Series 10. Knowledge about Animal Bones in a Shell Mound: A Relationship between Humans and Animals. Tokyo: Tokyo Bijutsu. [In Japanese]Google Scholar
Kaneko, H. (2002). Outline on archaeology of Japanese macaques. Asian Paleoprimatology, 2, 3536. [In Japanese]Google Scholar
Kawamoto, Y., Shotake, T., Nozawa, K., et al. (2007). Postglacial population expansion of Japanese macaques (Macaca fuscata) inferred from mitochondrial DNA phylogeography. Primates, 48(1), 2740.Google Scholar
Kawamura, Y. (1988). Quaternary rodent faunas in the Japanese Islands (Part 1). Memoirs of the Faculty of Science, Kyoto University, Series of Geology & Mineralogy, 53(1, 2), 31348.Google Scholar
Kawamura, Y. (1992). Stratigraphic distribution of mammals in the Taishaku-kyo sites, Hiroshima Prefecture, west Japan. The Quaternary Research, 31(1), 112. [In Japanese with English abstract]Google Scholar
Kawamura, Y. (1995). Mammalian remains of the Pre-Jomon Period from Taishaku-Kannondo Cave Site (Part 4): Mammalian remains obtained by the excavation of 1979. Annual Bulletin of Hiroshima University Taishaku-kyo Sites Research Centre, 10, 118–26, [In Japanese]Google Scholar
Kawamura, Y. (2011). Immigration of mammals into Japan during the Pleistocene: land and ice bridge formation, immigration, and extinction. Palaeolithic Archaeology, 75, 39. [In Japanese with English abstract]Google Scholar
Kawamura, Y., & Kajiura, K. (1980). Mammalian fossils from Sugi-ana Cave, Gifu Prefecture, Central Japan. Journal of the Speleological Society of Japan, 5, 5065. [In Japanese with English abstract]Google Scholar
Kawamura, Y., & Sotsuka, T. (1984). Preliminary report on the Quaternary mammalian remains from several caves on the Hiraodai Plateau, Fukuoka Prefecture, northern Kyushu, Japan. Bulletin of the Kitakyushu Museum of Natural History, 5, 163–88. [In Japanese with English abstract]Google Scholar
Kawamura, Y., Matsuhashi, Y., & Matsu’ura, S. (1990). Late Quaternary mammalian faunas at Suse Quarry, Toyohashi, Central Japan, and their implications for the reconstruction of the faunal succession. The Quaternary Research, 29(4), 307317. [In Japanese with English abstract]Google Scholar
Lee, Y. (ed) (2006). The Paleolithic Culture of Jungwon Region, Korea. Cheongju: Institute for Jungwon Culture, Chungbuk National University. [In Korean with English abstract]Google Scholar
Lee, Y., & Takai, M. (2012). The Middle to Late Pleistocene macaque fossils from central Korea. In Drozdov, N. I., Lee, Y., & Woo, J., eds., The 17th International Symposium: Suyanggae and Her Neighbors in Kurtak. Cheongju: Institute of Korean Prehistory and Krasnoyarsk State Pedagogical University, 116119.Google Scholar
Li, Q., & Zhang, Y. (2005). Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), inferred from mitochondrial DNA sequences. Biochemical Genetics, 43(7–8), 375386.Google Scholar
Li, J., Han, K., Xing, J., et al. (2009). Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene, 448(2), 242249.Google Scholar
Matsu’ura, S., & Kondo, M. (2003). Preliminary analysis on the age of sediments of Layer 4 on Kaza-ana Cave. In Dodo, Y., Takigawa, W., & Sawada, J., eds., Search of Pleistocene Hominid Fossils from the Kitakami Mountain Area in Iwate, Japan. Sendai: Tohoku University Press, 281283. [In Japanese]Google Scholar
Ministry of the Environment (2016). Guidelines for Specified Wildlife Conservation and Management Plan: Japanese Macaques, 2015. Tokyo: Office for Wildlife Management, Wildlife Division, Nature Conservation Bureau, Ministry of the Environment. [In Japanese]Google Scholar
Morales, J. C., & Melnick, D. J. (1998). Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. Journal of Human Evolution, 34, 123.Google Scholar
Mori, T. (1981). Japanese macaques from Torihama Shell Mounds. Monkey, 25(1), 1618. [In Japanese]Google Scholar
Muroyama, Y. (2008). Conservation of Satoyama and damage management: Japanese macaques. In Takatsuki, S., & Yamagiwa, J., eds., Mammalogy in Japan 2: Middle-, and Large-sized Mammals including Primates. Tokyo: University of Tokyo Press, 427452. [In Japanese]Google Scholar
Nishioka, Y., Anezaki, T., Iwamoto, M., & Takai, M. (2011). Chronological and geographical variations of Late Pleistocene/Holocene Japanese macaques (Macaca fuscata) based on molar measurements. Mammalian Science, 51(1), 117. [In Japanese with English abstract]Google Scholar
Ogino, S., & Otsuka, H. (2005). Morphological study of fossil Macaca cf. fuscata detected in the middle Pleistocene Matsugae fauna excavated from the cave deposits in northeastern Kyushu, Japan. Primate Research, 21(1), 19. [In Japanese with English summary]Google Scholar
Ohtaishi, N. (1983). Sika deer. In Kato, S., Kobayashi, T., & Fujimoto, T., eds., Studies on Jomon Culture 2. Tokyo: Yuzankaku Press, 122135. [In Japanese]Google Scholar
Okumura, K., Ishida, S., Kawamura, Y., Kumada, M., & Tamiya, S. (1982). Latest Pleistocene mammalian assemblage of Kumaishi-do Cave, Gifu prefecture and the significance of its 14C age. Earth Science (= Chikyu Kagaku), 36(4), 214218. [In Japanese with English abstract]Google Scholar
Osada, N., Matsudaira, K., Hamada, Y., & Malaivijitnond, S. (2020). Sex-biased migration and admixture in macaque species revealed by comparison between autosomal and X-chromosomal genomic sequences. bioRxiv, 2020.05.26.115915, Available from: https://doi.org/10.1101/2020.05.26.115915Google Scholar
Park, S., & Lee, Y. (1998). Pleistocene faunal remains from Saekul/Chonyokul at Turupong cave complex with special emphasis on the large mammalian fossils. In Xu, Q., & Lee, Y., eds., International Symposium for the Celebration of Chinese Academician Jia Lanpo’s 90th Birthday: Suyanggae and Her Neighbours. Beijing: Science Press, 5570.Google Scholar
Shigehara, N., Kaneko, H., & Iwamoto, M. (2002). Teeth of Japanese macaques (Macaca fuscata) from archaeological sites in Japan. Asian Paleoprimatology, 2(3), 2134.Google Scholar
Shigehara, N., Hongo, H., & Takai, M. (2003). Pleistocene Japanese macaques and wolves from Kaza-ana Cave. In Dodo, Y., Takigawa, W., & Sawada, J., eds., Search of Pleistocene Hominid Fossils from the Kitakami Mountain Area in Iwate, Japan. Sendai: Tohoku University Press, 387396. (in Japanese)Google Scholar
Shikama, T. (1949). The Kuzuü Ossuaries: Geological and palaeontological studies of the limestone fissure deposits, in Kuzuü, Totigi Prefecture. Science Reports of the Tohoku University, 2nd Series, Geology, 23, 1201.Google Scholar
Shitara, H. (2008). Sense of Jomon people towards the animals. In Nishimoto, T., ed., Japanese History of Human and Animals 1: Archaeology of Animals. Tokyo: Yoshikawa Kobunkan, 1034. [in Japanese]Google Scholar
Takai, F., & Hasegawa, Y. (1966). Vertebrate fossils from the Gansuiji Formation. Journal of the Anthropological Society of Nippon, 74(3/4), 155–67. [In Japanese]Google Scholar
Takai, M., Zhang, Y., Kono, R. T., & Jin, C. (2014). Changes in the composition of the Pleistocene primate fauna in southern China. Quaternary International, 354, 7585.CrossRefGoogle Scholar
Tomida, S. (1978). On the Quaternary cave and fissure deposits and vertebrate fossils from Yagé Quarry, near Lake Hamana, Central Japan. Bulletin of the Mizunami Fossil Museum, 5, 113141. [In Japanese with English abstract]Google Scholar
Tosi, A. J., Morales, J. C., & Melnick, D. J. (2000). Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Molecular Phylogenetics and Evolution, 17(2), 133144.Google Scholar
Tosi, A. J., Morales, J. C., & Melnick, D. J. (2003). Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution, 57(6), 1419–35.Google Scholar
Watanabe, K., & Mitani, M. (2019). Human and Nature, 30, 4968. [In Japanese with English summary]Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×