We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that every homeomorphism of a compact manifold with dimension one has zero topological emergence, whereas in dimension greater than one the topological emergence of a $C^0-$generic homeomorphism is maximal, equal to the dimension of the manifold. We also show that the metric emergence of a continuous self-map on compact metric space has the intermediate value property.
Let $(X,\mathcal {B},\mu ,T)$ be a probability-preserving system with X compact and T a homeomorphism. We show that if every point in $X\times X$ is two-sided recurrent, then $h_{\mu }(T)=0$, resolving a problem of Benjamin Weiss, and that if $h_{\mu }(T)=\infty $, then every full-measure set in X contains mean-asymptotic pairs (that is, the associated process is not tight), resolving a problem of Ornstein and Weiss.
We show that linearly repetitive weighted Delone sets in groups of polynomial growth have a uniquely ergodic hull. This result applies in particular to the linearly repetitive weighted Delone sets in homogeneous Lie groups constructed in the companion paper [S. Beckus, T. Hartnick and F. Pogorzelski. Symbolic substitution beyond Abelian groups. Preprint, 2021, arXiv:2109.15210] using symbolic substitution methods. More generally, using the quasi-tiling method of Ornstein and Weiss, we establish unique ergodicity of hulls of weighted Delone sets in amenable unimodular locally compact second countable groups under a new repetitivity condition which we call tempered repetitivity. For this purpose, we establish a general sub-additive convergence theorem, which also has applications concerning the existence of Banach densities and uniform approximation of the spectral distribution function of finite hopping range operators on Cayley graphs.
The present article is concerned with the Lyapunov stability of stationary solutions to the Allen–Cahn equation with a strong irreversibility constraint, which was first intensively studied in [2] and can be reduced to an evolutionary variational inequality of obstacle type. As a feature of the obstacle problem, the set of stationary solutions always includes accumulation points, and hence, it is rather delicate to determine the stability of such non-isolated equilibria. Furthermore, the strongly irreversible Allen–Cahn equation can also be regarded as a (generalized) gradient flow; however, standard techniques for gradient flows such as linearization and Łojasiewicz–Simon gradient inequalities are not available for determining the stability of stationary solutions to the strongly irreversible Allen–Cahn equation due to the non-smooth nature of the obstacle problem.
The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes.
It is known that hyperbolic linear delay difference equations are shadowable on the half-line. In this article, we prove the converse and hence the equivalence between hyperbolicity and the positive shadowing property for the following two classes of linear delay difference equations: (a) for non-autonomous equations with finite delays and uniformly bounded compact coefficient operators in Banach spaces and (b) for Volterra difference equations with infinite delay in finite dimensional spaces.
In this paper, we introduce topologically IGH-stable, IGH-persistent,average IGH-persistent and pointwise weakly topologically IGH-stable homeomorphisms of compact metric spaces. We prove that every topologically IGH-stable homeomorphism is topologically stable and every expansive topologically stable homeomorphism of a compact manifold is topologically IGH-stable. We further prove that every equicontinuous pointwise weakly topologically IGH-stable homeomorphism is IGH-persistent and every pointwise minimally expansive IGH-persistent homeomorphism is pointwise weakly topologically IGH-stable. Finally, we prove that every mean equicontinuous pointwise weakly topologically IGH-stable homeomorphism is average IGH-persistent.
Consider a flow in $\mathbb{R}^3$ and let K be the biggest invariant subset of some compact region of interest $N \subseteq \mathbb{R}^3$. The set K is often not computable, but the way the flow crosses the boundary of N can provide indirect information about it. For example, classical tools such as Ważewski’s principle or the Poincaré–Hopf theorem can be used to detect whether K is non-empty or contains rest points, respectively. We present a criterion that can establish whether K has a non-trivial homology by looking at the subset of the boundary of N along which the flow is tangent to N. We prove that the criterion is as sharp as possible with the information it uses as an input. We also show that it is algorithmically checkable.
An important question in dynamical systems is the classification problem, that is, the ability to distinguish between two isomorphic systems. In this work, we study the topological factors between a family of multidimensional substitutive subshifts generated by morphisms with uniform support. We prove that it is decidable to check whether two minimal aperiodic substitutive subshifts are isomorphic. The strategy followed in this work consists of giving a complete description of the factor maps between these subshifts. Then, we deduce some interesting consequences on coalescence, automorphism groups, and the number of aperiodic symbolic factors of substitutive subshifts. We also prove other combinatorial results on these substitutions, such as the decidability of defining a subshift, the computability of the constant of recognizability, and the conjugacy between substitutions with different supports.
We introduce the concept of ‘irrational paths’ for a given subshift and useit to characterize all minimal left ideals in the associated unital subshift algebra. Consequently, we characterize the socle as the sum of the ideals generated by irrational paths. Proceeding, we construct a graph such that the Leavitt path algebra of this graph is graded isomorphic to the socle. This realization allows us to show that the graded structure of the socle serves as an invariant for the conjugacy of Ott–Tomforde–Willis subshifts and for the isometric conjugacy of subshifts constructed with the product topology. Additionally, we establish that the socle of the unital subshift algebra is contained in the socle of the corresponding unital subshift C*-algebra.
For $E \subset \mathbb {N}$, a subset $R \subset \mathbb {N}$ is E-intersective if for every $A \subset E$ having positive relative density, $R \cap (A - A) \neq \varnothing $. We say that R is chromatically E-intersective if for every finite partition $E=\bigcup _{i=1}^k E_i$, there exists i such that $R\cap (E_i-E_i)\neq \varnothing $. When $E=\mathbb {N}$, we recover the usual notions of intersectivity and chromatic intersectivity. We investigate to what extent the known intersectivity results hold in the relative setting when $E = \mathbb {P}$, the set of primes, or other sparse subsets of $\mathbb {N}$. Among other things, we prove the following: (1) the set of shifted Chen primes $\mathbb {P}_{\mathrm {Chen}} + 1$ is both intersective and $\mathbb {P}$-intersective; (2) there exists an intersective set that is not $\mathbb {P}$-intersective; (3) every $\mathbb {P}$-intersective set is intersective; (4) there exists a chromatically $\mathbb {P}$-intersective set which is not intersective (and therefore not $\mathbb {P}$-intersective).
We study piecewise injective, but not necessarily globally injective, contracting maps on a compact subset of ${\mathbb R}^d$. We prove that, generically, the attractor and the set of discontinuities of such a map are disjoint, and hence the attractor consists of periodic orbits. In addition, we prove that piecewise injective contractions are generically topologically stable.
Using tools from computable analysis, we develop a notion of effectiveness for general dynamical systems as those group actions on arbitrary spaces that contain a computable representative in their topological conjugacy class. Most natural systems one can think of are effective in this sense, including some group rotations, affine actions on the torus and finitely presented algebraic actions. We show that for finitely generated and recursively presented groups, every effective dynamical system is the topological factor of a computable action on an effectively closed subset of the Cantor space. We then apply this result to extend the simulation results available in the literature beyond zero-dimensional spaces. In particular, we show that for a large class of groups, many of these natural actions are topological factors of subshifts of finite type.
Due to a result by Glasner and Downarowicz [Isomorphic extensions and applications. Topol. Methods Nonlinear Anal.48(1) (2016), 321–338], it is known that a minimal system is mean equicontinuous if and only if it is an isomorphic extension of its maximal equicontinuous factor. The majority of known examples of this type are almost automorphic, that is, the factor map to the maximal equicontinuous factor is almost one-to-one. The only cases of isomorphic extensions which are not almost automorphic are again due to Glasner and Downarowicz, who in the same article provide a construction of such systems in a rather general topological setting. Here, we use the Anosov–Katok method to provide an alternative route to such examples and to show that these may be realized as smooth skew product diffeomorphisms of the two-torus with an irrational rotation on the base. Moreover – and more importantly – a modification of the construction allows to ensure that lifts of these diffeomorphisms to finite covering spaces provide novel examples of finite-to-one topomorphic extensions of irrational rotations. These are still strictly ergodic and share the same dynamical eigenvalues as the original system, but show an additional singular continuous component of the dynamical spectrum.
We introduce and study two conditions on groups of homeomorphisms of Cantor space, namely the conditions of being vigorous and of being flawless. These concepts are dynamical in nature, and allow us to study a certain interplay between the dynamics of an action and the algebraic properties of the acting group. A group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is vigorous if for any clopen set A and proper clopen subsets B and C of A, there is $\gamma \in G$ in the pointwise stabiliser of $\mathfrak {C}\backslash A$ with $B\gamma \subseteq C$. A nontrivial group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is flawless if for all k and w a nontrivial freely reduced product expression on k variables (including inverse symbols), a particular subgroup $w(G)_\circ $ of the verbal subgroup $w(G)$ is the whole group. We show: 1) simple vigorous groups are either two-generated by torsion elements, or not finitely generated, 2) flawless groups are both perfect and lawless, 3) vigorous groups are simple if and only if they are flawless, and, 4) the class of vigorous simple subgroups of $\operatorname {Homeo}(\mathfrak {C})$ is fairly broad (the class is closed under various natural constructions and contains many well known groups, such as the commutator subgroups of the Higman–Thompson groups $G_{n,r}$, the Brin-Thompson groups $nV$, Röver’s group $V(\Gamma )$, and others of Nekrashevych’s ‘simple groups of dynamical origin’).
Let $(X,\mu ,T,d)$ be a metric measure-preserving dynamical system such that three-fold correlations decay exponentially for Lipschitz continuous observables. Given a sequence $(M_k)$ that converges to $0$ slowly enough, we obtain a strong dynamical Borel–Cantelli result for recurrence, that is, for $\mu $-almost every $x\in X$,
where $\mu (B_k(x)) = M_k$. In particular, we show that this result holds for Axiom A diffeomorphisms and equilibrium states under certain assumptions.
This paper studies various aspects of inverse limits of locally expanding affine linear maps on flat branched manifolds, which I call flat Wieler solenoids. Among the aspects studied are different types of cohomologies, the rates of mixing given by the Ruelle spectrum of the hyperbolic map acting on this space, and solutions of the cohomological equation in primitive substitution subshifts for Hölder functions. The overarching theme is that considerations of $\alpha $-Hölder regularity on Cantor sets go a long way.
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
We extend previously known two-dimensional multiplication tiling systems that simulate multiplication by two natural numbers p and q in base $pq$ to higher dimensional multiplication tessellation systems. We develop the theory of these systems and link different multiplication tessellation systems with each other via macrotile operations that glue cubes in one tessellation system into larger cubes of another tessellation system. The macrotile operations yield topological conjugacies and factor maps between cellular automata performing multiplication by positive numbers in various bases.