We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many science phenomena are modelled as interacting particle systems (IPS) coupled on static networks. In reality, network connections are far more dynamic. Connections among individuals receive feedback from nearby individuals and make changes to better adapt to the world. Hence, it is reasonable to model myriad real-world phenomena as co-evolutionary (or adaptive) networks. These networks are used in different areas including telecommunication, neuroscience, computer science, biochemistry, social science, as well as physics, where Kuramoto-type networks have been widely used to model interaction among a set of oscillators. In this paper, we propose a rigorous formulation for limits of a sequence of co-evolutionary Kuramoto oscillators coupled on heterogeneous co-evolutionary networks, which receive both positive and negative feedback from the dynamics of the oscillators on the networks. We show under mild conditions, the mean field limit (MFL) of the co-evolutionary network exists and the sequence of co-evolutionary Kuramoto networks converges to this MFL. Such MFL is described by solutions of a generalised Vlasov equation. We treat the graph limits as signed graph measures, motivated by the recent work in [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261–349]. In comparison to the recently emerging works on MFLs of IPS coupled on non-co-evolutionary networks (i.e., static networks or time-dependent networks independent of the dynamics of the IPS), our work seems the first to rigorously address the MFL of a co-evolutionary network model. The approach is based on our formulation of a generalisation of the co-evolutionary network as a hybrid system of ODEs and measure differential equations parametrised by a vertex variable, together with an analogue of the variation of parameters formula, as well as the generalised Neunzert’s in-cell-particle method developed in [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261–349].
We introduce a modification of the generalized Pólya urn model containing two urns, and we study the number of balls $B_j(n)$ of a given color $j\in\{1,\ldots,J\}$ added to the urns after n draws, where $J\in\mathbb{N}$. We provide sufficient conditions under which the random variables $(B_j(n))_{n\in\mathbb{N}}$, properly normalized and centered, converge weakly to a limiting random variable. The result reveals a similar trichotomy as in the classical case with one urn, one of the main differences being that in the scaling we encounter 1-periodic continuous functions. Another difference in our results compared to the classical urn models is that the phase transition of the second-order behavior occurs at $\sqrt{\rho}$ and not at $\rho/2$, where $\rho$ is the dominant eigenvalue of the mean replacement matrix.
The pth ($p\geq 1$) moment exponential stability, almost surely exponential stability and stability in distribution for stochastic McKean–Vlasov equation are derived based on some distribution-dependent Lyapunov function techniques.
The walk matrix associated to an $n\times n$ integer matrix $\mathbf{X}$ and an integer vector $b$ is defined by ${\mathbf{W}} \,:\!=\, (b,{\mathbf{X}} b,\ldots, {\mathbf{X}}^{n-1}b)$. We study limiting laws for the cokernel of $\mathbf{W}$ in the scenario where $\mathbf{X}$ is a random matrix with independent entries and $b$ is deterministic. Our first main result provides a formula for the distribution of the $p^m$-torsion part of the cokernel, as a group, when $\mathbf{X}$ has independent entries from a specific distribution. The second main result relaxes the distributional assumption and concerns the ${\mathbb{Z}}[x]$-module structure.
The motivation for this work arises from an open problem in spectral graph theory, which asks to show that random graphs are often determined up to isomorphism by their (generalised) spectrum. Sufficient conditions for generalised spectral determinacy can, namely, be stated in terms of the cokernel of a walk matrix. Extensions of our results could potentially be used to determine how often those conditions are satisfied. Some remaining challenges for such extensions are outlined in the paper.
We consider the community detection problem in sparse random hypergraphs under the non-uniform hypergraph stochastic block model (HSBM), a general model of random networks with community structure and higher-order interactions. When the random hypergraph has bounded expected degrees, we provide a spectral algorithm that outputs a partition with at least a $\gamma$ fraction of the vertices classified correctly, where $\gamma \in (0.5,1)$ depends on the signal-to-noise ratio (SNR) of the model. When the SNR grows slowly as the number of vertices goes to infinity, our algorithm achieves weak consistency, which improves the previous results in Ghoshdastidar and Dukkipati ((2017) Ann. Stat.45(1) 289–315.) for non-uniform HSBMs.
Our spectral algorithm consists of three major steps: (1) Hyperedge selection: select hyperedges of certain sizes to provide the maximal signal-to-noise ratio for the induced sub-hypergraph; (2) Spectral partition: construct a regularised adjacency matrix and obtain an approximate partition based on singular vectors; (3) Correction and merging: incorporate the hyperedge information from adjacency tensors to upgrade the error rate guarantee. The theoretical analysis of our algorithm relies on the concentration and regularisation of the adjacency matrix for sparse non-uniform random hypergraphs, which can be of independent interest.
We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank. The result covers both matrices over finite fields with independent non-zero entries and $\{0,1\}$-matrices over the rationals. The sufficient condition is generally necessary as well.
We explore the limiting spectral distribution of large-dimensional random permutation matrices, assuming the underlying population distribution possesses a general dependence structure. Let $\textbf X = (\textbf x_1,\ldots,\textbf x_n)$$\in \mathbb{C} ^{m \times n}$ be an $m \times n$ data matrix after self-normalization (n samples and m features), where $\textbf x_j = (x_{1j}^{*},\ldots, x_{mj}^{*} )^{*}$. Specifically, we generate a permutation matrix $\textbf X_\pi$ by permuting the entries of $\textbf x_j$$(j=1,\ldots,n)$ and demonstrate that the empirical spectral distribution of $\textbf {B}_n = ({m}/{n})\textbf{U} _{n} \textbf{X} _\pi \textbf{X} _\pi^{*} \textbf{U} _{n}^{*}$ weakly converges to the generalized Marčenko–Pastur distribution with probability 1, where $\textbf{U} _n$ is a sequence of $p \times m$ non-random complex matrices. The conditions we require are $p/n \to c >0$ and $m/n \to \gamma > 0$.
We study the distribution of the length of longest increasing subsequences in random permutations of n integers as n grows large and establish an asymptotic expansion in powers of $n^{-1/3}$. Whilst the limit law was already shown by Baik, Deift and Johansson to be the GUE Tracy–Widom distribution F, we find explicit analytic expressions of the first few finite-size correction terms as linear combinations of higher order derivatives of F with rational polynomial coefficients. Our proof replaces Johansson’s de-Poissonization, which is based on monotonicity as a Tauberian condition, by analytic de-Poissonization of Jacquet and Szpankowski, which is based on growth conditions in the complex plane; it is subject to a tameness hypothesis concerning complex zeros of the analytically continued Poissonized length distribution. In a preparatory step an expansion of the hard-to-soft edge transition law of LUE is studied, which is lifted to an expansion of the Poissonized length distribution for large intensities. Finally, expansions of Stirling-type approximations and of the expected value and variance of the length distribution are given.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
We establish the asymptotic expansion in $\beta $ matrix models with a confining, off-critical potential in the regime where the support of the equilibrium measure is a finite union of segments. We first address the case where the filling fractions of these segments are fixed and show the existence of a $\frac {1}{N}$ expansion. We then study the asymptotics of the sum over the filling fractions to obtain the full asymptotic expansion for the initial problem in the multi-cut regime. In particular, we identify the fluctuations of the linear statistics and show that they are approximated in law by the sum of a Gaussian random variable and an independent Gaussian discrete random variable with oscillating center. Fluctuations of filling fractions are also described by an oscillating discrete Gaussian random variable. We apply our results to study the all-order small dispersion asymptotics of solutions of the Toda chain associated with the one Hermitian matrix model ($\beta = 2$) as well as orthogonal ($\beta = 1$) and skew-orthogonal ($\beta = 4$) polynomials outside the bulk.
Let A be an $n \times n$ symmetric matrix with $(A_{i,j})_{i\leqslant j}$ independent and identically distributed according to a subgaussian distribution. We show that
where $\sigma _{\min }(A)$ denotes the least singular value of A and the constants $C,c>0 $ depend only on the distribution of the entries of A. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of $A_{i,j}$. Along the way, we prove that the probability that A has a repeated eigenvalue is $e^{-\Omega (n)}$, thus confirming a conjecture of Nguyen, Tao and Vu [Probab. Theory Relat. Fields 167 (2017), 777–816].
Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graph, which we call a tree of transitive tournaments. The latter is a block graph combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behaviour of a Markov random field.
We are also interested in the identifiability of the model parameters in the case when some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.
We study the local convergence of critical Galton–Watson trees under various conditionings. We give a sufficient condition, which serves to cover all previous known results, for the convergence in distribution of a conditioned Galton–Watson tree to Kesten’s tree. We also propose a new proof to give the limit in distribution of a critical Galton–Watson tree, with finite support, conditioned on having a large width.
Starting from loop equations, we prove that the wave functions constructed from topological recursion on families of degree $2$ spectral curves with a global involution satisfy a system of partial differential equations, whose equations can be seen as quantizations of the original spectral curves. The families of spectral curves can be parametrized with the so-called times, defined as periods on second type cycles, and with the poles. These equations can be used to prove that the WKB solution of many isomonodromic systems coincides with the topological recursion wave function, which proves that the topological recursion wave function is annihilated by a quantum curve. This recovers many known quantum curves for genus zero spectral curves and generalizes this construction to hyperelliptic curves.
We find closed formulas for arbitrarily high mixed moments of characteristic polynomials of the Alternative Circular Unitary Ensemble, as well as closed formulas for the averages of ratios of characteristic polynomials in this ensemble. A comparison is made to analogous results for the Circular Unitary Ensemble. Both moments and ratios are studied via symmetric function theory and a general formula of Borodin-Olshanski-Strahov.
The total energy of an eigenstate in a composite quantum system tends to be distributed equally among its constituents. We identify the quantum fluctuation around this equipartition principle in the simplest disordered quantum system consisting of linear combinations of Wigner matrices. As our main ingredient, we prove the Eigenstate Thermalisation Hypothesis and Gaussian fluctuation for general quadratic forms of the bulk eigenvectors of Wigner matrices with an arbitrary deformation.
Extreme value theory plays an important role in providing approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold t, where s(t) is a suitable norming function. We study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback–Leibler divergence between the respective densities.
In this note, we give a precise description of the limiting empirical spectral distribution for the non-backtracking matrices for an Erdős-Rényi graph $G(n,p)$ assuming $np/\log n$ tends to infinity. We show that derandomizing part of the non-backtracking random matrix simplifies the spectrum considerably, and then, we use Tao and Vu’s replacement principle and the Bauer-Fike theorem to show that the partly derandomized spectrum is, in fact, very close to the original spectrum.
We study the problem of detecting the community structure from the generalized stochastic block model with two communities (G2-SBM). Based on analysis of the Stieljtes transform of the empirical spectral distribution, we prove a Baik–Ben Arous–Péché (BBP)-type transition for the largest eigenvalue of the G2-SBM. For specific models, such as a hidden community model and an unbalanced stochastic block model, we provide precise formulas for the two largest eigenvalues, establishing the gap in the BBP-type transition.
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck [‘The measure theoretic approach to density’, Amer. J. Math.68 (1946), 560–580].