Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-21T13:40:08.712Z Has data issue: false hasContentIssue false

The Pervasiveness of Ensemble Perception

Not Just Your Average Review

Published online by Cambridge University Press:  13 January 2023

Jennifer E. Corbett
Affiliation:
Ohio State University
Igor Utochkin
Affiliation:
University of Chicago
Shaul Hochstein
Affiliation:
Hebrew University of Jerusalem

Summary

This Element outlines the recent understanding of ensemble representations in perception in a holistic way aimed to engage the general audience, novel and expert alike. The Element highlights the ubiquitous nature of this summary process, paving the way for a discussion of the theoretical and cortical underpinnings, and why ensemble encoding should be considered a basic, inherently necessary component of human perception. Following an overview of the topic, including a brief history of the field, the Element introduces overarching themes and a corresponding outline of the present work.
Get access
Type
Element
Information
Online ISBN: 9781009222716
Publisher: Cambridge University Press
Print publication: 02 February 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahissar, M., & Hochstein, S., (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401406.CrossRefGoogle ScholarPubMed
Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457464.CrossRefGoogle ScholarPubMed
Akyuz, S., Munneke, J., & Corbett, J. E. (2018). Set similarity modulates object tracking in dynamic environments. Attention, Perception, & Psychophysics, 80(7), 17441751.Google Scholar
Albrecht, A. R., & Scholl, B. J. (2010). Perceptually averaging in a continuous visual world: Extracting statistical summary representations over time. Journal of Vision, 9(8), 957–957.Google Scholar
Albrecht, A. R., Scholl, B. J., & Chun, M. M. (2012). Perceptual averaging by eye and ear: Computing summary statistics from multimodal stimuli. Attention, Perception, & Psychophysics, 74, 810815.Google Scholar
Allik, J., Toom, M., Raidvee, A., Averin, K., & Kreegipuu, K. (2013). An almost general theory of mean size perception. Vision Research, 83, 2539.Google Scholar
Allik, J., Toom, M., Raidvee, A., Averin, K., & Kreegipuu, K. (2014). Obligatory averaging in mean size perception. Vision Research, 101, 3440.Google Scholar
Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15 (3), 122131.Google Scholar
Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19(4), 392398.Google Scholar
Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences, 106(18), 73457350.Google Scholar
Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25(1), 265270.Google Scholar
Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12(2), 157162.Google Scholar
Ariely, D. (2008). Better than average? When can we say that subsampling of items is better than statistical summary representations? Perception & Psychophysics, 70(7), 13251326.Google Scholar
Attarha, M., & Moore, C. M. (2014). Orientation summary statistics are limited in processing capacity. Visual Cognition, 22, 10181022.CrossRefGoogle Scholar
Attarha, M., & Moore, C. M. (2015a). The capacity limitations of orientation summary statistics. Attention, Perception, & Psychophysics, 77, 1161131.CrossRefGoogle ScholarPubMed
Attarha, M., & Moore, C. M. (2015b). The perceptual processing capacity of summary statistics between and within feature dimensions. Journal of Vision, 15(4), 9, 117.Google Scholar
Attarha, M., Moore, C. M., & Vecera, S. (2014). Summary statistics of size: Fixed processing capacity for multiple ensembles but unlimited processing capacity for single ensembles. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 14401449.Google ScholarPubMed
Attarha, M., Moore, C. M., & Vecera, S. (2016). The time limited statistician: Temporal constraints on the establishment of summary representations. Journal of Experimental Psychology: Human Perception and Performance, 42(10), 14971504.Google Scholar
Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61(3), 183193.Google Scholar
Baek, J., & Chong, S. C. (2020a). Distributed attention model of perceptual averaging. Attention, Perception, & Psychophysics, 82(1), 6379.CrossRefGoogle ScholarPubMed
Baek, J., & Chong, S. C. (2020b). Ensemble perception and focused attention: Two different modes of visual processing to cope with limited capacity. Psychonomic Bulletin & Review, 27(4), 602606.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In Sensory Сommunication (p. 217234). MIT Press.Google Scholar
Bauer, B. (2009). Does Stevens’s Power Law for brightness extend to perceptual brightness averaging? Psychological Record, 59, 171185.Google Scholar
Bauer, B. (2015). A selective summary of visual averaging research and issues up to 2000. Journal of Vision, 15(4), 14, 115.CrossRefGoogle ScholarPubMed
Bauer, B. (2017). Perceptual averaging of line length: Effects of concurrent digit memory load. Attention, Perception, & Psychophysics, 79(8), 25102522.Google Scholar
Boduroglu, A., & Shah, P. (2014). Configural representations in spatial working memory. Visual Cognition, 22(1), 102124.Google Scholar
Brady, T. F., & Alvarez, G. A. (2010). Ensemble statistics of a display influence the representation of items in visual working memory. Visual Cognition, 18(1), 114118.Google Scholar
Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384392.Google Scholar
Brady, T. F., & Alvarez, G. A. (2015a). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921.Google Scholar
Brady, T. F., & Alvarez, G. A. (2015b). Contextual effects in visual working memory reveal hierarchically structured memory representations. Journal of Vision, 15(15), 6–6.Google Scholar
Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487502.CrossRefGoogle ScholarPubMed
Brand, J., Oriet, C., & Sykes Tottenham, L. (2012). Size and emotion averaging: Costs of dividing attention after all. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 66(1), 63.Google Scholar
Brezis, N., Bronfman, Z., & Usher, M. (2015). Adaptive spontaneous transitions between two mechanisms of numerical averaging. Scientific Reports, 5, 10415.Google Scholar
Brezis, N., Bronfman, Z. Z., & Usher, M. (2018). A perceptual-like population-coding mechanism of approximate numerical averaging. Neural Computation, 30(2), 428446.Google Scholar
Brezis, N., Bronfman, Z. Z., Jacoby, N., Lavidor, M., & Usher, M. (2016). Transcranial direct current stimulation over the parietal cortex improves approximate numerical averaging. Journal of Cognitive Neuroscience, 28(11), 17001713.Google Scholar
Bronfman, Z. Z., Brezis, N., Jacobson, H., & Usher, M. (2014). We see more than we can report: “Cost free” color phenomenality outside focal attention. Psychological Science, 25(7), 13941403.Google Scholar
Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425428.Google Scholar
Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. The Journal of Physiology, 197(3), 551566.Google Scholar
Cant, J. S., & Xu, Y. (2012). Object ensemble processing in human anterior-medial ventral visual cortex. Journal of Neuroscience, 32, 76857700.Google Scholar
Cant, J. S., & Xu, Y. (2015). The impact of density and ratio on object-ensemble representation in human anterior-medial ventral visual cortex. Cerebral Cortex, 25(11), 42264239.Google Scholar
Cant, J. S., & Xu, Y. (2017). The contribution of object shape and surface properties to object ensemble representation in anterior-medial ventral visual cortex. Journal of Cognitive Neuroscience, 29(2), 398412.Google Scholar
Cant, J. S., Sun, S. Z., & Xu, Y. (2015). Distinct cognitive mechanisms involved in the processing of single objects and object ensembles. Journal of Vision, 15(4), 12–12.Google Scholar
Cha, O., & Chong, S. C. (2018). Perceived average orientation reflects effective gist of the surface. Psychological Science, 29(3), 319327.Google Scholar
Cha, O., Blake, R., & Chong, S. C. (2018). Composite binocular perception from dichoptic stimulus arrays with similar ensemble information. Scientific Reports, 8, 8263.Google Scholar
Cha, O., Blake, R., & Gauthier, I. (2022). Contribution of a common ability in average and variability judgments. Psychonomic Bulletin & Review, 29(1), 108115.Google Scholar
Chang, T.-Y., & Gauthier, I. (2021). Domain-general ability underlies complex object ensemble processing. Journal of Experimental Psychology: General. 151(4), 966972Google Scholar
Chen, B., & Zhou, G. (2018). Attentional modulation of hierarchical ensemble coding for the identities of moving faces. Journal of Experimental Psychology: Human Perception and Performance, 44(10), 15421556.Google ScholarPubMed
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196210.Google Scholar
Chetverikov, A., Campana, G., & Kristjansson, A. (2017a). Rapid learning of visual ensembles. Journal of Vision, 17(2), 21, 115.CrossRefGoogle ScholarPubMed
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Representing color ensembles. Psychological Science, 28(10), 15101517.Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017c). Set size manipulations reveal the boundary conditions of perceptual ensemble learning. Vision Research, 140, 144156.Google Scholar
Chetverikov, A., Hansmann-Roth, S., Tanrikulu, Ö. D., & Kristjansson, Á. (2019). Feature distribution learning (FDL): A new method for studying visual ensembles perception with priming of attention shifts. In Spatial learning and attention guidance (ed. Wolfgang Walz) (pp. 37–57). Humana, New York.Google Scholar
Cho, J., & Chong, S. C. (2019). Search termination when the target is absent: The prevalence of coarse processing and its intertrial influence. Journal of Experimental Psychology: Human Perception and Performance, 45(11), 14551469.Google Scholar
Choi, Y. M., & Chong, S. C. (2020). Effects of selective attention on mean-size computation: Weighted averaging and perceptual enlargement. Psychological Science, 31(10), 12611271.CrossRefGoogle ScholarPubMed
Chong, S. C., & Evans, K. K. (2011). Distributed versus focused attention (count vs estimate). Wiley Interdisciplinary Reviews: Cognitive Science, 2(6), 634638.Google Scholar
Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393404.Google Scholar
Chong, S. C., & Treisman, A. (2005a). Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 67(1), 113.Google Scholar
Chong, S. C., & Treisman, A. (2005b). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45, 891900Google Scholar
Chong, S. C., Joo, S. J., Emmanouil, T.-A., & Treisman, A. (2008). Statistical processing: not so implausible after all. Perception & Psychophysics, 70(7), 13271334.Google Scholar
Choo, H., & Franconeri, S. L. (2010). Objects with reduced visibility still contribute to size averaging. Attention, Perception, & Psychophysics, 72(1), 8699.Google Scholar
Cohen, M. A., & Chun, M. M. (2017). Studying consciousness through inattentional blindness, change blindness, and the attentional blink. In The Blackwell Companion to Consciousness (eds Schneider, S. & Velmans, M.) (pp. 539550). John Wiley & Sons, New York.Google Scholar
Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual experience? Trends in Cognitive Sciences, 20(5), 324335.Google Scholar
Cooper, E. A., & Radonjić, A. (2016). Gender representation in the vision sciences: A longitudinal study. Journal of Vision, 16(1), 1–10.Google Scholar
Corbett, J. E. (2017). The whole warps the sum of its parts: Gestalt-defined-group mean size biases memory for individual objects. Psychological Science, 28(1), 1222.Google Scholar
Corbett, J. E., Greenwood, J., & Munneke, J. (osf.io/e3dvq/) Smart perception? Gestalt grouping, perceptual averaging, and memory capacity.Google Scholar
Corbett, J. E., & Melcher, D. (2014a). Characterizing ensemble statistics: Mean size is represented across multiple frames of reference. Attention, Perception, & Psychophysics, 76(3), 746758.Google Scholar
Corbett, J. E., & Melcher, D. (2014b). Stable statistical representations facilitate visual search. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1915.Google Scholar
Corbett, J. E., & Munneke, J. (2018). “It’s not a tumor”: A framework for capitalizing on individual diversity to boost target detection. Psychological Science, 29(10), 16921705.Google Scholar
Corbett, J. E., & Munneke, J. (2020). Statistical stability and set size exert distinct influences on visual search. Attention, Perception, & Psychophysics, 40 Years of Feature Integration: Special Issue in Memory of Anne Treisman, 82(2), 832839.Google Scholar
Corbett, J. E., & Oriet, C. (2011). The whole is indeed more than the sum of its parts: Perceptual averaging in the absence of individual item representation. Acta Psychologica, 138(2), 289301.Google Scholar
Corbett, J. E., Fischer, J., & Whitney, D. (2011). Facilitating stable representations: Serial dependence in vision. PLoS One, 6(1), e16701.Google Scholar
Corbett, J. E., Oriet, C., & Rensink, R. A. (2006). The rapid extraction of numeric meaning. Vision Research, 46(10), 15591573.Google Scholar
Corbett, J. E., Venuti, P., & Melcher, D. (2016). Perceptual averaging in individuals with autism spectrum disorder. Frontiers in Psychology, 7, 1735.Google Scholar
Corbett, J. E., Wurnitsch, N., Schwartz, A., & Whitney, D. (2012). An aftereffect of adaptation to mean size. Visual Cognition, 20(2), 211231.Google Scholar
Corbett, J. E., & Song, J.-H. (2014). Statistical extraction affects visually guided action. Visual Cognition, 22(7), 881895.Google Scholar
Corbett, J. E., Aydın, B., & Munneke, J. (2021). Adaptation to average duration. Attention, Perception, & Psychophysics, 83, 11901200.Google Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87114.Google Scholar
Crawford, L. E., Corbin, J. C., & Landy, D. (2019). Prior experience informs ensemble encoding. Psychonomic Bulletin & Review, 26(3), 9931000.Google Scholar
Cui, L., & Liu, Z. (2021). Synergy between research on ensemble perception, data visualization, and statistics education: A tutorial review. Attention, Perception, & Psychophysics, 83(3), 12901311.CrossRefGoogle ScholarPubMed
Dakin, S. C. (2001). Information limit on the spatial integration of local orientation signals. JOSA A, 18(5), 10161026.Google Scholar
Dakin, S. C., Bex, P. J., Cass, J. R., & Watt, R. J. (2009). Dissociable effects of attention and crowding on orientation averaging. Journal of Vision, 9(11), 116.Google Scholar
Dakin, S. C., Mareschal, I., & Bex, P. J. (2005). Local and global limitations on direction integration assessed using equivalent noise analysis. Vision research, 45(24), 30273049.Google Scholar
Dakin, S. C., & Watt, R. J. (1997). The computation of orientation statistics from visual texture. Vision Research, 37(22), 31813192.Google Scholar
De Fockert, J. W., & Marchant, A. P. (2008). Attention modulates set representation by statistical properties. Perception & Psychophysics, 70(5), 789794.Google Scholar
De Fockert, J., & Wolfenstein, C. (2009). Short article: Rapid extraction of mean identity from sets of faces. Quarterly Journal of Experimental Psychology, 62(9), 17161722.Google Scholar
De Gardelle, V., & Summerfield, C. (2011). Robust averaging during perceptual judgment. Proceedings of the National Academy of Sciences, 108(32), 1334113346.Google Scholar
de Haan, B., Karnath, H. O., & Driver, J. (2012). Mechanisms and anatomy of unilateral extinction after brain injury. Neuropsychologia, 50(6), 10451053.Google Scholar
Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58(1), 1722.Google Scholar
Demeyere, N., Rzeskiewicz, A., Humphreys, K. A., & Humphreys, G. W. (2008). Automatic statistical processing of visual properties in simultanagnosia. Neuropsychologia, 46(11), 28612864.Google Scholar
Dodgson, D. B., & Raymond, J. E. (2020). Value associations bias ensemble perception. Attention, Perception, & Psychophysics, 82(1), 109117.Google Scholar
Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79(1–2), 3988.Google Scholar
Dubé, C., & Sekuler, R. (2015). Obligatory and adaptive averaging in visual short-term memory. Journal of Vision, 15(4), 1–13.Google Scholar
Durgin, F. H. (1995). Texture density adaptation and the perceived numerosity and distribution of texture. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 149169.Google Scholar
Durgin, F. H. (2008). Texture density adaptation and visual number revisited. Current Biology, 18(18), R855R856.Google Scholar
Durgin, F. H., & Huk, A. C. (1997). Texture density aftereffects in the perception of artificial and natural textures. Vision research, 37(23), 32733282.Google Scholar
Durgin, F. H., & Proffitt, D. R. (1996). Visual learning in the perception of texture: simple and contingent aftereffects of texture density. Spatial Vision, 9(4), 423.Google Scholar
Emmanouil, T. A., & Treisman, A. (2008). Dividing attention across feature dimensions in statistical processing of perceptual groups. Perception & Psychophysics, 70(6), 946954.Google Scholar
Epstein, M. L., & Emmanouil, T. A. (2017). Ensemble coding remains accurate under object and spatial visual working memory load. Attention, Perception, & Psychophysics, 79(7), 20882097.Google Scholar
Epstein, M. L., & Emmanouil, T. A. (2021). Ensemble statistics can be available before individual item properties: Electroencephalography evidence using the Oddball paradigm. Journal of Cognitive Neuroscience, 33(6), 10561068.Google Scholar
Epstein, M. L., Quilty-Dunn, J., Mandelbaum, E., & Emmanouil, T. A. (2020). The outlier paradox: The role of iterative ensemble coding in discounting outliers. Journal of Experimental Psychology: Human Perception and Performance, 46(11), 12671279.Google Scholar
Fan, A. W.-Y., Guo, L. L., Frost, A. et al. (2021). Grasping of real-world objects is not biased by ensemble perception. Frontiers in Psychology, 12, 597691.Google Scholar
Fischer, J., & Whitney, D. (2011). Object-level visual information gets through the bottleneck of crowding. Journal of Neurophysiology, 106(3), 13891398.Google Scholar
Fouriezos, G., Rubenfeld, S., & Capstick, G. (2008). Visual statistical decisions. Perception & Psychophysics, 70(3), 456464.Google Scholar
Galton, F. (1907). Vox populi (the wisdom of crowds). Nature, 75(7), 450451.Google Scholar
Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 14161419.Google Scholar
Gillen, C., & Heath, M. (2014a). Perceptual averaging governs antisaccade endpoint bias. Experimental Brain Research, 232 (10), 32013210.Google Scholar
Gillen, C., & Heath, M. (2014b). Target frequency influences antisaccade endpoint bias: Evidence for perceptual averaging. Vision Research, 105, 151158.Google Scholar
Goldenberg, A., Weisz, E., Sweeny, T. D., Cikara, M., & Gross, J. J. (2021). The crowd-emotion-amplification effect. Psychological Science, 32(3), 437450.Google Scholar
Haberman, J., Brady, T. F., & Alvarez, G. A. (2015). Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. Journal of Experimental Psychology: General, 144(2), 432.Google Scholar
Haberman, J., Harp, T., & Whitney, D. (2009). Averaging facial expression over time. Journal of Vision, 9(11), 1–13.Google Scholar
Haberman, J., Lee, P., & Whitney, D. (2015). Mixed emotions: Sensitivity to facial variance in a crowd of faces. Journal of Vision, 15(4), 16.Google Scholar
Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572576.Google Scholar
Haberman, J., & Suresh, S. (2021). Ensemble size judgments account for size constancy. Attention, Perception, & Psychophysics, 83(3), 925933.Google Scholar
Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17, R751R753.Google Scholar
Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35, 718734.Google Scholar
Haberman, J., & Whitney, D. (2010). The visual system discounts emotional deviants when extracting average expression. Attention, Perception, & Psychophysics, 72(7), 18251838.Google Scholar
Haberman, J., & Whitney, D. (2012). Ensemble perception: Summarizing the scene and broadening the limits of visual processing. From perception to consciousness: Searching with Anne Treisman, 339–349.Google Scholar
Hamidi, M., Giuffre, L., & Heath, M. (2021). A summary statistical representation influences perceptions but not visually or memory-guided grasping. Human Movement Science, 75, 102739.Google Scholar
Hansmann-Roth, S., Kristjánsson, Á., Whitney, D., & Chetverikov, A. (2021). Dissociating implicit and explicit ensemble representations reveals the limits of visual perception and the richness of behavior. Scientific Reports, 11(1), 112.Google Scholar
Happé, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of autism and developmental disorders, 36(1), 525.Google Scholar
Harrison, W. J., McMaster, J. M., & Bays, P. M. (2021). Limited memory for ensemble statistics in visual change detection. Cognition, 214, 104763.Google Scholar
Harrison, L., Yang, F., Franconeri, S., & Chang, R. (2014). Ranking visualizations of correlation using weber’s law. IEEE Transactions on Visualization and Computer Graphics, 20(12), 19431952.Google Scholar
Hochstein, S. (2016). The power of populations: How the brain represents features and summary statistics. Journal of Vision, 16(12), 1117.Google Scholar
Hochstein, S. (2020). The gist of Anne Treisman’s revolution. Attention, Perception, & Psychophysics, 82(1), 2430.Google Scholar
Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791804.Google Scholar
Hochstein, S., & Pavlovskaya, M. (2020). Perceptual learning of ensemble and outlier perception. Journal of Vision, 20(8), 13, 117.CrossRefGoogle ScholarPubMed
Hochstein, S., Pavlovskaya, M., Bonneh, Y. S., & Soroker, N. (2015). Global statistics are not neglected. Journal of Vision, 15(4), 7.Google Scholar
Hochstein, S., Pavlovskaya, M., Bonneh, Y. S., & Soroker, N. (2018). Comparing set summary statistics and outlier pop out in vision. Journal of Vision, 18(13), 12.Google Scholar
Hollingworth, H. L. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology and Scientific Methods, 7(17), 461469.Google Scholar
Holway, A. H., & Boring, E. G. (1941). Determinants of apparent visual size with distance variant. The American Journal of Psychology, 54(1), 2137.Google Scholar
Hommel, B., & Akyürek, E. G. (2005). Lag-1 sparing in the attentional blink: Benefits and costs of integrating two events into a single episode. Quarterly Journal of Experimental Psychology, 58A, 14151433.Google Scholar
Huang, L. (2015). Statistical properties demand as much attention as object features. PLoS One, 10(8), e0131191.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148(3), 574591.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106154.Google Scholar
Hubert-Wallander, B., & Boynton, G. M. (2015). Not all summary statistics are made equal: Evidence from extracting summaries across time. Journal of Vision, 15(4), 1–12.Google Scholar
Iakovlev, A. U., & Utochkin, I. S. (2021). Roles of saliency and set size in ensemble averaging. Attention, Perception, & Psychophysics, 83(3), 12511262.Google Scholar
Im, H. Y., & Chong, S. C. (2009). Computation of mean size is based on perceived size. Attention, Perception, & Psychophysics, 71(2), 375384.Google Scholar
Im, H. Y., & Chong, S. C. (2014). Mean size as a unit of visual working memory. Perception, 43(7), 663676.Google Scholar
Im, H. Y., Chong, S. C., Sun, J. et al. (2017). Cross-cultural and hemispheric laterality effects on the ensemble coding of emotion in facial crowds. Culture & Brain, 5, 125152.Google Scholar
Im, H. Y., Cushing, C. A., Ward, N., & Kveraga, K. (2021). Differential neurodynamics and connectivity in the dorsal and ventral visual pathways during perception of emotional crowds and individuals: a MEG study. Cognitive, Affective, & Behavioral Neuroscience, 21(4), 776792.CrossRefGoogle ScholarPubMed
Im, H. Y., & Halberda, J. (2013). The effects of sampling and internal noise on the representation of ensemble average size. Attention, Perception, & Psychophysics, 75(2), 278286.CrossRefGoogle ScholarPubMed
Im, H. Y., Park, W. J., & Chong, S. C. (2015). Ensemble statistics as units of selection. Journal of Cognitive Psychology, 27(1), 114127.CrossRefGoogle Scholar
Im, H. Y., Tiurina, N. A., & Utochkin, I. S. (2021). An explicit investigation of the roles that feature distributions play in rapid visual categorization. Attention, Perception, and Psychophysics, 83, 10501069.Google Scholar
Jackson-Nielsen, M., Cohen, M. A., & Pitts, M. A. (2017). Perception of ensemble statistics requires attention. Consciousness and Cognition, 48, 149160.Google Scholar
Jacoby, O., Kamke, M. R., & Mattingley, J. B. (2013). Is the whole really more than the sum of its parts? Estimates of average size and orientation are susceptible to object substitution masking. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 233244.Google Scholar
Jeong, J., & Chong, S. C. (2020). Adaptation to mean and variance: Interrelationships between mean and variance representations in orientation perception. Vision Research, 167, 4653.Google Scholar
Ji, L., Chen, W., & Fu, X. (2014, June). Different roles of foveal and extrafoveal vision in ensemble representation for facial expressions. In International Conference on Engineering Psychology and Cognitive Ergonomics (ed. Harris, D.) (pp. 164–173). Springer, Cham.Google Scholar
Ji, L., & Pourtois, G. (2018). Capacity limitations to extract the mean emotion from multiple facial expressions depend on emotion variance. Vision Research, 145, 3948.Google Scholar
Johnston, A., Arnold, D. H., & Nishida, S. (2006). Spatially localized distortions of event time. Current Biology, 16(5), 472479.Google Scholar
Joo, S. J., Shin, K., Chong, S. C., & Blake, R. (2009). On the nature of the stimulus information necessary for estimating mean size of visual arrays. Journal of Vision, 9(9), 7.Google Scholar
Jung, W., Bülthoff, I., & Armann, R. G. (2017). The contribution of foveal and peripheral visual information to ensemble representation of face race. Journal of Vision, 17(13), 11.Google Scholar
Kacin, M., Gauthier, I., & Cha, O. (2021). Ensemble coding of average length and average orientation are correlated. Vision Research, 187, 94181.Google Scholar
Kahneman, D. (2011). Thinking, fast and slow. Macmillan.Google Scholar
Kanaya, S., Hayashi, M. J., & Whitney, D. (2018). Exaggerated groups: Amplification in ensemble coding of temporal and spatial features. Proceedings of the Royal Society B- Biological Sciences, 285(20172770), 19.Google Scholar
Karaminis, T., Neil, L., Manning, C. et al. (2017). Ensemble perception of emotions in children with autism is similar to typically developing children. Developmental Cognitive Neuroscience, 24, 5162.Google Scholar
Khayat, N., Fusi, S., & Hochstein, S. (2021). Perceiving ensemble statistics of novel image sets. Attention, Perception, & Psychophysics, 83, 13121328.Google Scholar
Khayat, N., & Hochstein, S. (2018). Perceiving set mean and range: Automaticity and precision. Journal of Vision, 18(9), 23.Google Scholar
Khayat, N., & Hochstein, S. (2019). Relating categorization to set summary statistics perception. Attention, Perception, & Psychophysics, 81, 28502872.Google Scholar
Khvostov, V. A., Lukashevich, A. O., & Utochkin, I. S. (2021). Spatially intermixed objects of different categories are parsed automatically. Scientific Reports, 11(377), 18.Google Scholar
Khvostov, V. A., & Utochkin, I. S. (2019). Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks. Journal of Vision, 19(9), 3.Google Scholar
Kim, M., & Chong, S. C. (2020). The visual system does not compute a single mean but summarizes a distribution. Journal of Experimental Psychology: Human Perception and Performance, 46(9), 10131028.Google Scholar
Kramer, R. S. S., Ritchie, K. L., & Burton, A. M. (2015). Viewers extract the mean from images of the same person: A route to face learning. Journal of Vision, 15(4), 1, 19.Google Scholar
Lanzoni, L., Melcher, D., Miceli, G., & Corbett, J. E. (2014). Global statistical regularities modulate the speed of visual search in patients with focal attentional deficits. “Zooming in on the Big Picture: Current Issues in Global versus Local Processing,” Special Issue Frontiers in Psychology, Perception Science, 5(a514), 12.Google Scholar
Lau, J. S. H., & Brady, T. F. (2018). Ensemble statistics accessed through proxies: Range heuristic and dependence on low-level properties in variability discrimination. Journal of Vision, 18(9), 3.Google Scholar
Lee, H., Baek, J., & Chong, S. C. (2016). Perceived magnitude of visual displays: Area, numerosity, and mean size. Journal of Vision, 16(3), 12.Google Scholar
Lew, T. F., & Vul, E. (2013): Environment sensitivity in hierarchical representations. Visual Cognition, 21(6), 693697.Google Scholar
Lew, T. F., & Vul, E. (2015). Ensemble clustering in visual working memory biases location memories and reduces the Weber noise of relative positions. Journal of Vision, 15(4), 10, 114.Google Scholar
Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99(14), 95969601.Google Scholar
Li, H., Ji, L., Tong, K. et al. (2016). Processing of individual items during ensemble coding of facial expressions. Frontiers in Psychology, 7, 1332.Google Scholar
Li, K. A., & Yeh, S. L. (2017). Mean size estimation yields left-side bias: role of attention on perceptual averaging. Attention, Perception, & Psychophysics, 79(8), 25382551.Google Scholar
Li, V., Herce Castañón, S., Solomon, J. A., Vandormael, H., & Summerfield, C. (2017). Robust averaging protects decisions from noise in neural computations. PLoS Computational Biology, 13(8), e1005723.Google Scholar
Lowe, M. X., Stevenson, R. A., Barense, M. D., Cant, J. S., & Ferber, S. (2018). Relating the perception of visual ensemble statistics to individual levels of autistic traits. Attention, Perception, & Psychophysics, 80(7), 16671674.Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279281.Google Scholar
Luo, A. X., & Zhao, J. (2018). Capacity limit of ensemble perception of multiple spatially intermixed sets. Attention, Perception, & Psychophysics, 80(8), 20332047.CrossRefGoogle ScholarPubMed
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 14321438.Google Scholar
Malpass, R. S., & Kravitz, J. (1969). Recognition for faces of own and other race. Journal of Personality and Social Psychology, 13, 330335.Google Scholar
Manassi, M., Ghirardo, C., Canas-Bajo, T. et al. (2021). Serial dependence in the perceptual judgments of radiologists. Cognitive Research: Principles and Implications, 6(1), 65.Google Scholar
Manassi, M., Liberman, A., Chaney, W., & Whitney, D. (2017). The perceived stability of scenes: serial dependence in ensemble representations. Scientific Reports, 7(1), 19.Google Scholar
Marchant, A. P., Simons, D. J., & de Fockert, J. W. (2013). Ensemble representations: Effects of set size and item heterogeneity on average size perception. Acta Psychologica, 142(2), 245250.Google Scholar
Markov, Y., & Tiurina, N. (2021). Size-distance rescaling in the ensemble representation of range: Study with binocular and monocular cues. Acta Psychologica, 213, 103238.Google Scholar
Markov, Y., Tiurina, N. A., Stakina, Y., & Utochkin, I. S. (2017). The capacity and precision of visual working memory for objects and ensembles. Psychology, 14(4), 735755.Google Scholar
Maule, J., & Franklin, A. (2015). Effects of ensemble complexity and perceptual similarity on rapid averaging of hue. Journal of Vision, 15(4), 6.Google Scholar
Maule, J., & Franklin, A. (2016) Accurate rapid averaging of multihue ensembles is due to a limited capacity subsampling. Journal of the Optical Society of America A, 33(3), A22A29.Google Scholar
Maule, J., & Franklin, A. (2020). Adaptation to variance generalizes across visual domains. Journal of Experimental Psychology: General, 149(4), 662675.Google Scholar
Maule, J., Stanworth, K., Pellicano, E., & Franklin, A. (2017). Ensemble perception of color in autistic adults. Autism Research, 10(5), 839851.Google Scholar
Maule, J., Witzel, C., & Franklin, A. (2014). Getting the gist of multiple hues: metric and categorical effects on ensemble perception of hue. Journal of the Optical Society of America, 31(4), A93A102.Google Scholar
McDermott, J. H., Schemitsch, M., & Simoncelli, E. P. (2013). Summary statistics in auditory perception. Nature Neuroscience, 16(4), 493500.Google Scholar
McNair, N. A., Goodbourn, P. T., Shone, L. T., & Harris, I. M. (2017). Summary statistics in the attentional blink. Attention, Perception, & Psychophysics, 79(1), 100116.Google Scholar
Messenger, J. F. (1903). The perception of number. The Psychological Review: Monograph Supplements, 5(5), i44.Google Scholar
Michael, E., de Gardelle, V., & Summerfield, C. (2014). Priming by the variability of visual information. Proceedings of the National Academy of Sciences, 111(21), 78737878.Google Scholar
Miller, A., Pedersen, V., & Sheldon, R. (1970). Magnitude estimation of average length: A follow-up. The American Journal of Psychology, 83(1), 95102.Google Scholar
Miller, A. L., & Sheldon, R. (1969). Magnitude estimation of average length and average inclination. Journal of Experimental Psychology, 81(1), 1621.Google Scholar
Moerel, D., Ling, S., & Jehee, J. F. (2016). Perceptual learning increases orientation sampling efficiency. Journal of Vision, 16(3), 19.Google Scholar
Moore, C. M., & Egeth, H. (1997). Perception without attention: Evidence of grouping under conditions of inattention. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 339352.Google Scholar
Morgan, M., Chubb, C., & Solomon, J. A. (2008). A ‘dipper’function for texture discrimination based on orientation variance. Journal of Vision, 8(11), 9.Google Scholar
Munneke, J., Duymaz, İ., & Corbett, J. E. (2022). Value-driven effects on perceptual averaging. Attention, Perception, & Psychophysics, 84(3), 781794.Google Scholar
Myczek, K., & Simons, D. J. (2008). Better than average: Alternatives to statistical summary representations for rapid judgments of average size. Perception & Psychophysics, 70(5), 772788.Google Scholar
Neumann, M. F., Schweinberger, S. R., & Burton, A. M. (2013). Viewers extract mean and individual identity from sets of famous faces. Cognition, 128(1), 5663.Google Scholar
Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2015). Direct encoding of orientation variance in the visual system. Journal of Vision, 15(4), 3.Google Scholar
Olkkonen, M., McCarthy, P. F., & Allred, S. R. (2014). The central tendency bias in color perception: Effects of internal and external noise. Journal of Vision, 14 (11), 5, 115.Google Scholar
Oriet, C., & Brand, J. (2013). Size averaging of irrelevant stimuli cannot be prevented. Vision Research, 79, 816.Google Scholar
Oriet, C., & Hozempa, K. (2016). Incidental statistical summary representation over time. Journal of Vision, 16, 3, 114.Google Scholar
Pardilla-Delgado, E., & Payne, J. D. (2017). The Deese-Roediger-McDermott (DRM) task: A simple cognitive paradigm to investigate false memories in the laboratory. Journal of visualized experiments: JoVE, (119), e54793.Google Scholar
Park, J., & Park, S. (2017). Conjoint representation of texture ensemble and location in the parahippocampal place area. Journal of Neurophysiology, 117(4), 15951607.Google Scholar
Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4(7), 739744.Google Scholar
Pascucci, D., Ruethemann, N., & Plomp, G. (2021). The anisotropic field of ensemble coding. Scientific Reports, 11(1), 110.Google Scholar
Pavlovskaya, M., & Hochstein, S. (2011). Perceptual learning transfer between hemispheres and tasks for easy and hard feature search conditions. Journal of Vision, 11(1), 8.Google Scholar
Pavlovskaya, M., Ring, H., Groswasser, Z., & Hochstein, S. (2002). Searching with unilateral neglect. Journal of Cognitive Neuroscience, 14(5), 745756.Google Scholar
Pavlovskaya, M., Soroker, N., Bonneh, Y. S., & Hochstein, S. (2015). Computing an average when part of the population is not perceived. Journal of Cognitive Neuroscience, 27(7), 13971411.Google Scholar
Peng, S., Liu, C. H., Yang, X. et al. (2020). Culture variation in the average identity extraction: The role of global vs. local processing orientation. Visual Cognition, 28(3), 180191.Google Scholar
Piazza, E. A., Sweeny, T. D., Wessel, D., Silver, M. A., & Whitney, D. (2013). Humans use summary statistics to perceive auditory sequences. Psychological Science, 24(8), 13891397.Google Scholar
Poltoratski, S., & Xu, Y. (2013). The association of color memory and the enumeration of multiple spatially overlapping sets. Journal of vision, 13(8), 111.Google Scholar
Potter, M. C., & Faulconer, B. A. (1975). Time to understand pictures and words. Nature, 253(5491), 437438.Google Scholar
Prasad, D., & Bainbridge, W. A. (2021). The visual Mandela effect: Evidence for specific shared false memories in popular iconography. Journal of Vision, 21(9), 2121–2121.Google Scholar
Raidvee, A., Toom, M., Averin, K., & Aliik, J. (2020). Perception of means, sums, and areas. Attention, Perception and Psychophysics, 82(2), 865876.Google Scholar
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink?. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849860.Google Scholar
Rensink, R. A. (2004). Visual sensing without seeing. Psychological Science, 15(1), 2732.Google Scholar
Rensink, R. A. (2017). The nature of correlation perception in scatterplots. Psychonomic Bulletin & Review, 24(3), 776797.Google Scholar
Rensink, R. A., & Baldridge, G. (2010, June). The perception of correlation in scatterplots. In Computer Graphics Forum (eds Melançon, G., Munzner, T., and Weiskopf, D. ) (Vol. 29, No. 3, pp. 1203–1210). Oxford: Blackwell.Google Scholar
Rensink, R. A., O’regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368373.Google Scholar
Rhodes, G., Neumann, M. F., Ewing, L., & Palermo, R. (2015). Reduced set averaging of face identity in children and adolescents with autism. Quarterly Journal of Experimental Psychology, 68(7), 13911403.Google Scholar
Robitaille, N., & Harris, I. M. (2011). When more is less: Extraction of summary statistics benefits from larger sets. Journal of Vision, 11(12), 18.Google Scholar
Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of experimental psychology: Learning, Memory, and Cognition, 21(4), 803814.Google Scholar
Rosenholtz, R. (2001). Visual search for orientation among heterogeneous distractors: Experimental results and implications for signal-detection theory models of search. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 985999.Google Scholar
Sama, M. A., Srikanthan, D., Nestor, A., & Cant, J. S. (2021). Global and local interference effects in ensemble encoding are best explained by interactions between summary representations of the mean and the range. Attention, Perception, & Psychophysics, 83(3), 11061128.Google Scholar
Schweickert, R., Han, H. J., Yamaguchi, M., & Fortin, C. (2014). Estimating averages from distributions of tone durations. Attention, Perception, & Psychophysics, 76(2), 605620.Google Scholar
Semizer, Y., & Boduroglu, A. (2021). Variability leads to overestimation of mean summaries. Attention, Perception, & Psychophysics, 83(3), 11291140.Google Scholar
Solomon, J. A. (2009). The history of dipper functions. Attention, Perception, & Psychophysics, 71(3), 435443.Google Scholar
Solomon, J. A. (2010). Visual discrimination of orientation statistics in crowded and uncrowded arrays. Journal of Vision, 10(14), 19.Google Scholar
Solomon, J. A., & Morgan, M. J. (2017) Orientation-defined boundaries are detected with low efficiency. Vision Research 138, 6670.Google Scholar
Solomon, J. A., & Morgan, M. J. (2018). Calculation efficiencies for mean numerosity. Psychological Science, 29(11), 18241831.Google Scholar
Solomon, J. A., Morgan, M., & Chubb, C. (2011). Efficiencies for the statistics of size discrimination. Journal of Vision, 11(12), 13.Google Scholar
Son, G., Oh, B.-I., Kang, M.-S., & Chong, S. C. (2020). Similarity-based clusters are representational units of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 4659.Google Scholar
Sun, J., & Chong, S. C. (2020). Power of averaging: Noise reduction by ensemble coding of multiple faces. Journal of Experimental Psychology: General, 149(3), 550563.Google Scholar
Sweeny, T. D., Haroz, S., & Whitney, D. (2013). Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 329337.Google Scholar
Sweeny, T. D., & Whitney, D. (2014). Perceiving crowd attention ensemble perception of a crowd’s gaze. Psychological Science, 25(10), 19031913.Google Scholar
Sweeny, T. D., Wurnitsch, N., Gopnik, A., & Whitney, D. (2015). Ensemble perception of size in 4–5‐year‐old children. Developmental science, 18(4), 556568.Google Scholar
Szafir, D. A., Haroz, S., Gleicher, M., & Franconeri, S. (2016). Four types of ensemble coding in data visualizations. Journal of Vision, 16(5), 11.Google Scholar
Takano, Y., & Kimura, E. (2020). Task-driven and flexible mean judgment for heterogeneous luminance ensembles. Attention, Perception & Psychophysics, 82(2), 877890.Google Scholar
Tark, K. J., Kang, M. S., Chong, S. C., & Shim, W. M. (2021). Neural representations of ensemble coding in the occipital and parietal cortices. NeuroImage, 245, 118680.Google Scholar
Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520522.Google Scholar
Tiurina, N. A., & Utochkin, I. S. (2019). Ensemble perception in depth: Correct size-distance rescaling of multiple objects before averaging. Journal of Experimental Psychology: General, 148(4), 728738.Google Scholar
Tokita, M., Ueda, S., & Ishiguchi, A. (2016). Evidence for a global sampling process in extraction of summary statistics of item sizes in a set. Frontiers in Psychology, 7, 711.Google Scholar
Tong, K., Dubé, C., & Sekuler, R. (2019). What makes a prototype a prototype? Averaging visual features in a sequence. Attention, Perception, & Psychophysics, 81(6), 19621978.Google Scholar
Tong, K., Ji, L., Chen, W., & Fu, X. (2015). Unstable mean context causes sensitivity loss and biased estimation of variability. Journal of Vision, 15(4), 15.Google Scholar
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychological Review, 113(4), 766786.Google Scholar
Treisman, A. (2006). How the deployment of attention determines what we see. Visual Cognition, 14(4–8), 411443.Google Scholar
Treisman, A. M., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12(1), 97136.Google Scholar
Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 95(1), 1548.Google Scholar
Treue, S., Hol, K., & Rauber, H. J. (2000). Seeing multiple directions of motion—Physiology and psychophysics. Nature Neuroscience, 3, 270276.Google Scholar
Utochkin, I. S., & Brady, T. F. (2020). Individual representations in visual working memory inherit ensemble properties. Journal of Experimental Psychology: Human Perception and Performance, 46(5), 458473.Google Scholar
Utochkin, I. S., & Tiurina, N. A. (2014). Parallel averaging of size is possible but range-limited: A reply to Marchant, Simons, and De Fockert. Acta Psychologica, 146, 718.Google Scholar
Utochkin, I. S., & Vostrikov, K. O. (2017). The numerosity and mean size of multiple objects are perceived independently and in parallel. PloS One, 12(9), e0185452.Google Scholar
Utochkin, I. S. (2015). Ensemble summary statistics as a basis for rapid visual categorization. Journal of Vision, 15(8), 114.Google Scholar
Utochkin, I.S., Choi, J., & Chong, S.C. (2022). A population response model of ensemble coding. bioRxiv. www.biorxiv.org/content/10.1101/2022.01.19.476871v1.Google Scholar
Utochkin, I. S., Khvostov, V. A., & Stakina, Y. M. (2018). Continuous to discrete: Ensemble-based segmentation in the perception of multiple feature conjunctions. Cognition, 179, 178191.Google Scholar
Utochkin, I. S., & Yurevich, M. A. (2016). Similarity and heterogeneity effects in visual search are mediated by “segmentability”. Journal of Experimental Psychology: Human Perception and Performance, 42 (7), 9951007.Google ScholarPubMed
Verghese, P., & Stone, L. S. (1996). Perceived visual speed constrained by image segmentation. Nature, 381(6578), 161163.Google Scholar
Virtanen, L. S., Olkkonen, M., & Saarela, T. P. (2020). Color ensembles: Sampling and averaging spatial hue distributions. Journal of Vision, 20(5), 114.Google Scholar
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748751.Google Scholar
Vul, E., & Pashler, H. (2008). Measuring the crowd within: Probabilistic representations within individuals. Psychological Science, 19, 645647.Google Scholar
Walker, D., & Vul, E. (2014). Hierarchical encoding makes individuals in a group seem more attractive. Psychological Science, 25(1), 230235.Google Scholar
Ward, E. J., Bear, A., & Scholl, B. J. (2016). Can you perceive ensembles without perceiving individuals?: The role of statistical perception in determining whether awareness overflows access. Cognition, 152, 7886.Google Scholar
Watamaniuk, S. N., & Duchon, A. (1992). The human visual system averages speed information. Vision Research, 32(5), 931941.Google Scholar
Watamaniuk, S. N., & Sekuler, R. (1992). Temporal and spatial integration in dynamic random-dot stimuli. Vision Research, 32(12), 23412347.Google Scholar
Watamaniuk, S. N. J., Sekuler, R., & Williams, D. W. (1989). Direction perception in complex dynamic displays: The integration of direction information. Vision Research, 29(1), 4759.Google Scholar
Webster, J., Kay, P., & Webster, M. A. (2014). Perceiving the average hue of color arrays. Journal of the Optical Society of America, 31(4), A283A292.Google Scholar
Weiss, D. J., & Anderson, N. H. (1969). Subjective averaging of length with serial presentation. Journal of Experimental Psychology, 82(1, Pt.1), 5263.Google Scholar
Wertheimer, M. (1923). Laws of organization in perceptual forms. In A Source Book of Gestalt Psychology (ed Ellis, W. D.) (pp. 71–88). Kegan Paul, Trench, Trubner & Co.Google Scholar
Whiting, B. F., & Oriet, C. (2011) Rapid averaging? Not so fast! Psychonomic Bulletin & Review, 18, 484489.Google Scholar
Whitney, D., & Yamanashi Leib, A. (2018). Ensemble perception. Annual Review of Psychology, 69, 105129.Google Scholar
Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of vision, 4(12), 11201135.Google Scholar
Williams, R. S., Pratt, J., Ferber, S., & Cant, J. S. (2021). Tuning the ensemble: Incidental skewing of the perceptual average through memory-driven selection. Journal of Experimental Psychology: Human Perception and Performance, 47(5), 648661.Google Scholar
Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24(1), 5562.Google Scholar
Wolfe, B. A., Kosovicheva, A. A., Leib, A. Y., Wood, K., & Whitney, D. (2015). Foveal input is not required for perception of crowd facial expression. Journal of Vision, 15(4), 11.Google Scholar
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435(7041), 439440.Google Scholar
Woodworth, R. S. (1938). Experimental psychology. New York: Holt.Google Scholar
Yamanashi Leib, A., Chang, K., Xia, Y., Peng, A., & Whitney, D. (2020). Fleeting impressions of economic value via summary statistical representations. Journal of Experimental Psychology: General, 149(10), 18111822.Google Scholar
Yamanashi Leib, A., Fischer, J. T., Liu, Y. et al. (2014). Ensemble crowd perception: A viewpoint-invariant mechanism to represent average crowd identity. Journal of Vision, 14(8), 26, 113.Google Scholar
Yamanashi Leib, A., Kosovicheva, A., & Whitney, D. (2016). Fast ensemble representations for abstract visual impressions. Nature Communications, 7, 13186.Google Scholar
Yamanashi Leib, A., Landau, A. N., Baek, Y., Chong, S. C., & Robertson, L. (2012). Extracting the mean size across the visual field in patients with mild, chronic unilateral neglect. Frontiers in Human Neuroscience, 6, 267.Google Scholar
Yang, F., Harrison, L. T., Rensink, R. A., Franconeri, S. L., & Chang, R. (2018). Correlation judgment and visualization features: A comparative study. IEEE Transactions on Visualization and Computer Graphics, 25(3), 14741488.Google Scholar
Yang, Y., Tokita, M., & Ishiguchi, A. (2018). Is there a common summary statistical process for representing the mean and variance? A study using illustrations of familiar items. i-Perception, 9(1), 2041669517747297.Google Scholar
Yantis, S., & Abrams, R. A. (2014). Sensation and Perception. New York: Worth.Google Scholar
Yildirim, I., Öğreden, O., & Boduroglu, A. (2018). Impact of spatial grouping on mean size estimation. Attention, Perception, & Psychophysics, 80(7), 18471862.Google Scholar
Yörük, H., & Boduroglu, A. (2020). Feature-specificity in visual statistical summary processing. Attention, Perception, & Psychophysics, 82(2), 852864.Google Scholar
Yuan, L., Haroz, S., & Franconeri, S. (2019). Perceptual proxies for extracting averages in data visualizations. Psychonomic Bulletin & Review, 26(2), 669676.Google Scholar
Zepp, J., Dubé, C., & Melcher, D. (2021). A direct comparison of central tendency recall and temporal integration in the successive field iconic memory task. Attention, Perception, & Psychophysics, 83(3), 13371356.Google Scholar
Zosh, J. M., Halberda, J., & Feigenson, L. (2011). Memory for multiple visual ensembles in infancy. Journal of Experimental Psychology: General, 140(2), 141.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Pervasiveness of Ensemble Perception
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Pervasiveness of Ensemble Perception
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Pervasiveness of Ensemble Perception
Available formats
×