Published online by Cambridge University Press: 01 June 2017
In this paper, novel geospatial services are presented which are able to process on the server-side numerous remote sensing data based on big data frameworks like Hadoop and Rasdaman. The developed system itself features several software modules that orchestrate the different image processing algorithms responsible for the production of consistent value-added maps like canopy greenness and leaf area index. Through distributed multitemporal analysis, the entire crop growth cycle can be continuously monitored through the analysis of time-series observations. These observations cover multiple crop growth cycles, offering invaluable information by linking weather statistical data with the start, the end and the duration of each growth cycle enabling critical decisions by direct comparison with the current crop growth state.