Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T20:44:06.021Z Has data issue: false hasContentIssue false

Continuous-time locally stationary time series models

Published online by Cambridge University Press:  20 June 2023

Annemarie Bitter*
Affiliation:
Ulm University
Robert Stelzer*
Affiliation:
Ulm University
Bennet Ströh*
Affiliation:
Imperial College London
*
*Postal address: Helmholtzstraße 18, 89069 Ulm, Germany.
*Postal address: Helmholtzstraße 18, 89069 Ulm, Germany.
****Postal address: 180 Queen’s Gate, London, SW7 2AZ, UK. Email address: b.stroh@imperial.ac.uk

Abstract

We adapt the classical definition of locally stationary processes in discrete time (see e.g. Dahlhaus, ‘Locally stationary processes’, in Time Series Analysis: Methods and Applications (2012)) to the continuous-time setting and obtain equivalent representations in the time and frequency domains. From this, a unique time-varying spectral density is derived using the Wigner–Ville spectrum. As an example, we investigate time-varying Lévy-driven state space processes, including the class of time-varying Lévy-driven CARMA processes. First, the connection between these two classes of processes is examined. Considering a sequence of time-varying Lévy-driven state space processes, we then give sufficient conditions on the coefficient functions that ensure local stationarity with respect to the given definition.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press.10.1017/CBO9780511809781CrossRefGoogle Scholar
Baake, M. and Schlägel, U. (2011). The Peano–Baker series. Proc. Steklov Inst. Math. 275, 155159.10.1134/S0081543811080098CrossRefGoogle Scholar
Bardet, J. M., Doukhan, P. and Wintenberger, O. (2020). Contrast estimation of general locally stationary processes using coupling. Preprint. Available at https://arxiv.org/abs/2005.07397.Google Scholar
Benth, F. E., Klüppelberg, C., Müller, G. and Vos, L. (2014). Futures pricing in electricity markets based on stable CARMA spot models. Energy Econom. 44, 392406.10.1016/j.eneco.2014.03.020CrossRefGoogle Scholar
Benmahammed, K. (1987). Model reduction of uniformly controllable continuous time varying linear systems. In Proc. 1987 American Control Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 1500–1503.Google Scholar
Bernstein, D. S. (2009). Matrix Mathematics: Theory, Facts, and Formulas, 2nd edn. Princeton University Press.10.1515/9781400833344CrossRefGoogle Scholar
Brockett, R. W. (1970). Finite Dimensional Linear Systems. John Wiley, New York.Google Scholar
Brockwell, P. J. and Davis, R. A. (1996). Time Series: Theory and Methods. Springer, New York.Google Scholar
Bruscato, A. and Toloi, C. M. C. (2004). Spectral analysis of non-stationary processes using the Fourier transform. Brazilian J. Prob. Statist. 18, 69102.Google Scholar
Chandrasekharan, K. (1989). Classical Fourier Transforms. Springer, Berlin.10.1007/978-3-642-74029-9CrossRefGoogle Scholar
Dahlhaus, R. (1996). On the Kullback–Leibler information divergence of locally stationary processes. Stoch. Process. Appl. 62, 139168.10.1016/0304-4149(95)00090-9CrossRefGoogle Scholar
Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25, 137.10.1214/aos/1034276620CrossRefGoogle Scholar
Dahlhaus, R. (2000). A likelihood approximation for locally stationary processes. Ann. Statist. 28, 17621794.10.1214/aos/1015957480CrossRefGoogle Scholar
Dahlhaus, R. (2012). Locally stationary processes. In Time Series Analysis: Methods and Applications (Handbook Statist. 30), North-Holland, Amsterdam, pp. 351–413.10.1016/B978-0-444-53858-1.00013-2CrossRefGoogle Scholar
Dahlhaus, R. and Polonik, W. (2009). Empirical spectral processes for locally stationary time series. Bernoulli 15, 139.10.3150/08-BEJ137CrossRefGoogle Scholar
Dahlhaus, R., Richter, S. and Wu, W. B. (2019). Towards a general theory for nonlinear locally stationary processes. Bernoulli 25, 10131044.10.3150/17-BEJ1011CrossRefGoogle Scholar
Dahlhaus, R. and Subba Rao, T. (2006). Statistical inference for time-varying ARCH processes. Ann. Statist. 34, 10751114.10.1214/009053606000000227CrossRefGoogle Scholar
Flandrin, P. and Martin, W. (1984). A general class of estimators for the Wigner–Ville spectrum of non-stationary processes. In Analysis and Optimization of Systems: Proc. Sixth International Conference on Analysis and Optimization of Systems, Nice, June 19–22, 1984, Part 1 (Lecture Notes Control Inf. Sci. 62), Springer, Berlin, pp. 15–23.10.1007/BFb0004941CrossRefGoogle Scholar
Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis. Cambridge University Press.Google Scholar
Katznelson, Y. (2004). An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press.10.1017/CBO9781139165372CrossRefGoogle Scholar
Koo, B. and Linton, O. (2012). Estimation of semiparametric locally stationary diffusion models. J. Econometrics 170, 210233.10.1016/j.jeconom.2012.05.003CrossRefGoogle Scholar
Krylov, N. V. (2002). Introduction to the Theory of Random Processes. American Mathematical Society, Providence, RI.10.1090/gsm/043CrossRefGoogle Scholar
Künsch, H. R. (1995). A note on causal solutions for locally stationary AR-processes. Preprint. Available at ftp://ess.r-project.org/users/hkuensch/localstat-ar.pdf.Google Scholar
Kurisu, D. (2022). Nonparametric regression for locally stationary random fields under stochastic sampling design. Bernoulli 28, 12501275.10.3150/21-BEJ1385CrossRefGoogle Scholar
Larsson, E. K. and Mossberg, M. (2004). Fast and approximative estimation of continuous-time stochastic signals from discrete-time data. In 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 529–532.Google Scholar
Lukes, D. N. (1982). Differential Equations: Classical to Controlled. Academic Press, London.Google Scholar
Mammen, E. (2007). Nonparametric estimation of locally stationary Hawkes processes. Preprint. Available at https://arxiv.org/abs/1707.04469.Google Scholar
Marquardt, T. and Stelzer, R. (2007). Multivariate CARMA processes. Stoch. Process. Appl. 117, 96120.10.1016/j.spa.2006.05.014CrossRefGoogle Scholar
Martin, W. and Flandrin, P. (1985). Wigner–Ville spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech Signal Process. 33, 14611470.10.1109/TASSP.1985.1164760CrossRefGoogle Scholar
Matsuada, Y. and Yajima, Y. (2018). Locally stationary spatio-temporal processes. Japanese J. Statist. Data Sci. 1, 4157.10.1007/s42081-018-0003-9CrossRefGoogle Scholar
Priestley, M. B. (1994). Spectral Analysis and Time Series. Academic Press, London.Google Scholar
Ramar, K. and Ramaswami, B. (1971). Transformation of time-variable multi-input systems to a canonical form. IEEE Trans. Automatic Control 16, 371374.10.1109/TAC.1971.1099740CrossRefGoogle Scholar
Ramaswami, B. and Ramar, K. (1969). On the transformation of time-variable systems to the phase-variable canonical form. IEEE Trans. Automatic Control 14, 417419.10.1109/TAC.1969.1099215CrossRefGoogle Scholar
Roueff, F. and von Sachs, R. (2019). Time-frequency analysis of locally stationary Hawkes processes. Bernoulli 25, 13551385.10.3150/18-BEJ1023CrossRefGoogle Scholar
Roueff, F., von Sachs, R. and Sansonnet, L. (2016). Locally stationary Hawkes processes. Stoch. Process. Appl. 126, 17101743.10.1016/j.spa.2015.12.003CrossRefGoogle Scholar
Royden, H. L. (1988). Real Analysis, 3rd edn. Macmillan, New York.Google Scholar
Rudin, W. (1991). Functional Analysis, 2nd edn. McGraw-Hill, New York.Google Scholar
Rugh, W. J. (1996). Linear System Theory, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Sato, K. I. (2013). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Sato, K.-I. (2014). Stochastic integrals with respect to Lévy processes and infinitely divisible distributions. Sugaku Expositions 27, 1942.Google Scholar
Schlemm, E. and Stelzer, R. (2012). Multivariate CARMA processes, continuous-time state space models and complete regularity of the innovations of the sampled processes. Bernoulli 18, 4663.10.3150/10-BEJ329CrossRefGoogle Scholar
Silverman, L. (1966). Transformation of time-variable systems to canonical (phase-variable) form. IEEE Trans. Automatic Control 11, 300303.10.1109/TAC.1966.1098312CrossRefGoogle Scholar
Surulescu, N. M. (2010). On some classes of continuous-time series models and their use in financial economics. Doctoral Thesis, Ruprecht-Karls-Universität Heidelberg.Google Scholar
Vogt, M. (2012). Nonparametric regression for locally stationary time series. Ann. Statist. 40, 26012633.10.1214/12-AOS1043CrossRefGoogle Scholar
Vogt, M. and Dette, H. (2015). Detecting gradual changes in locally stationary processes. Ann. Statist. 43, 713740.10.1214/14-AOS1297CrossRefGoogle Scholar
Walter, W. (2000). Gewöhnliche Differentialgleichungen, 7th edn. Springer, Berlin.10.1007/978-3-642-57240-1CrossRefGoogle Scholar
Wu, M.-A. and Sherif, A. (1976). On the commutative class of linear time-varying systems. Internat. J. Control. 23, 433444.10.1080/00207177608922171CrossRefGoogle Scholar