Published online by Cambridge University Press: 01 July 2016
A distributional coupling concept is defined for continuous-time stochastic processes on a general state space and applied to processes having a certain non-time-homogeneous regeneration property: regeneration occurs at random times So, S1, · ·· forming an increasing Markov chain, the post-Sn process is conditionally independent of So, · ··, Sn–1 given Sn, and the conditional distribution is independent of n. The coupling problem is reduced to an investigation of the regeneration times So, S1, · ··, and a successful coupling is constructed under the condition that the recurrence times Xn+1 = Sn+1 – Sn given that , are stochastically dominated by an integrable random variable, and that the distributions
, have a common component which is absolutely continuous with respect to Lebesgue measure (or aperiodic when the Sn's are lattice-valued). This yields results on the tendency to forget initial conditions as time tends to ∞. In particular, tendency towards equilibrium is obtained, provided the post-Sn process is independent of Sn. The ergodic results cover convergence and uniform convergence of distributions and mean measures in total variation norm. Rate results are also obtained under moment conditions on the Ps's and the times of the first regeneration.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.