Published online by Cambridge University Press: 01 July 2016
This paper complements two previous studies (Daley and Rolski (1984), (1991)) by investigating limit properties of the waiting time in k-server queues with renewal arrival process under ‘light traffic' conditions. Formulae for the limits of the probability of waiting and the waiting time moments are derived for the two approaches of dilation and thinning of the arrival process. Asmussen's (1991) approach to light traffic limits applies to the cases considered, of which the Poisson arrival process (i.e. M/G/k) is a special case and for which formulae are given.
Research carried out in part while visiting the Mathematical Institute, University of Wrocław.
Research carried out in part while visiting Department of Mathematics and Statistics, Case Western Reserve University at Cleveland, Ohio.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.