Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T17:16:55.752Z Has data issue: false hasContentIssue false

Limit laws for a stochastic process and random recursion arising in probabilistic modelling

Published online by Cambridge University Press:  01 July 2016

Svetlozar T. Rachev*
Affiliation:
University of California at Santa Barbara
Gennady Samorodnitsky*
Affiliation:
Cornell University
*
* Postal address: Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA.
** Postal address: School of ORIE, 206 ETC Building, Cornell University, Ithaca, NY 14853–3801, USA.

Abstract

We study certain stochastic processes arising in probabilistic modelling. We discuss the limit behavior of these processes and estimate the rate of convergence to the limit.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by NATO Scientific Affairs Division Grant CRG 900798 and Grant from UC Regents, University of California, Santa Barbara. S.T.R. also wishes to thank Econometric Institute, Erasmus University, Rotterdam for hospitality and support.

Supported by the ONR grant N00014-90-J-1287 and United States–Israel Binational Science Foundation.

References

Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
Bollerslev, T. (1987) A conditionally heteroscedastic time series model for speculative prices and rates of return. Rev. Econom. Statist. 69, 542547.Google Scholar
Brandt, A., Franken, P. and Lisek, B. (1990) Stationary Stochastic Models. Wiley, New York.Google Scholar
Cavalli-Sforza, L. (1975) Cultural and biological evolution: a theoretical inquiry. In Proceedings of the Conference on Directions in Mathematical Statistics , ed. Ghurye, S. G.. Suppl. Adv. Appl. Prob. 7, 9099.CrossRefGoogle Scholar
Cavalli-Sforza, L. and Feldman, M. W. (1973) Models for cultural inheritance I. Group mean and within group variation. Theoret. Popn. Biol. 4, 4255.Google Scholar
Chandrasekhar, S. and Munch, G. (1950) The theory of the fluctuations in brightness of the Milky Way. I and II. Astrophys. J. 112, 380398.Google Scholar
Chernick, M. R., Daley, D. J. and Littlejohn, R. P. (1988) A time-reversibility relationship between two Markov chains with exponential stationary distributions. J. Appl. Prob. 25, 418422.Google Scholar
De Haan, L. and Rachev, S. T. (1989) Estimates of the rate of convergence for max-stable processes. Ann. Prob. 17, 651677.Google Scholar
De Haan, L., Resnick, S. I., Rootzen, H. and Vries, C. G. (1989) Extremal behavior of solutions to a stochastic difference equation with applications to ARCH processes. Stoch. Proc. Appl. 32, 213224.Google Scholar
Domowitz, I. and Hakkio, C. S. (1985) Conditional variance and the risk premium in the foreign exchange market. J. Internat. Econ. 19, 4766.Google Scholar
Engle, R. F., Lilien, D. M. and Robins, R. P., (1987) Estimating time varying risk premia in the term structure: the ARCH model. Econometrica 55, 391407.Google Scholar
Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edn. Wiley, New York.Google Scholar
Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Prob. 1, 126166.Google Scholar
Grincevicius, A. K. (1974) A central limit theorem for the group of linear transformations of the line (in Russian). Dokl. Akad. Nauk SSSR 219, 2336.Google Scholar
Hausdorff, F. (1969) Set Theory. Dover, New York.Google Scholar
Helland, I. S. and Nilsen, T. S. (1976) On a general random exchange model. J. Appl. Prob. 13, 781790.CrossRefGoogle Scholar
Hooghiemstra, G. and Keane, M. (1985). Calculation of the equilibrium distribution for a solar energy storage model. J. Appl. Prob. 22, 852864.CrossRefGoogle Scholar
Hooghiemstra, G. and Scheffer, C. L. (1986) Some limit theorems for an energy storage model. Stoch. Proc. Appl. 22, 121127.Google Scholar
Hsieh, D. A. (1988) The statistical properties of daily foreign exchange rates: 1974–1983. J. Internat. Econom. 24, 129145.Google Scholar
Kesten, H. (1973) Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207248.Google Scholar
Kifer, Y. (1986) Ergodic Theory of Random Transformations. Birkhauser, Boston.Google Scholar
Klebanov, L. B., Maniya, G. M. and Melamed, I. A. (1984) A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables. Theory Prob. Appl. 29, 791794.Google Scholar
Kuratowski, K. (1966) Topology , Vol. I. Academic Press, New York.Google Scholar
Kuratowski, K. (1969) Topology , Vol. II. Academic Press, New York.Google Scholar
Lassner, F. (1974a) Sommes de produits de variables aléatoires indépendantes. Thesis, Université de Paris VI.Google Scholar
Lassner, F. (1974b) Sur certains types de mécanismes additifs en economie stochastique. C. R. Acad. Sci. Paris A279, 3336.Google Scholar
Letac, G. (1986) A contraction principle for certain Markov chains and its applications. In Random Matrices and their Applications. Proc. AMS-IMS-SIAM Joint Summer Research Conf. 1984, ed. Cohen, J. E., Kesten, H. and Newman, C. M., Contemp. Math. 50, 263273. American Mathematical Society Providence, R.I. Google Scholar
Matheron, G. (1975) Random Sets and Integral Geometry. Wiley, New York.Google Scholar
Mittnik, S. and Rachev, S. T. (1991) Alternative multivariate stable distributions and their applications to financial modeling. In Stable Processes and Related Topics , ed. Cambanis, S., Samorodnitsky, G. and Taqqu, M. S., A Selection of Papers from MSI Workshop, 1990, 107120. Birkhäuser, Boston.Google Scholar
Paulson, A. S. and Uppuluri, V. R. R. (1972) Limit laws of a sequence determined by a random difference equation governing a one-compartment system. Math. Biosci. 13, 325333.Google Scholar
Perrakis, S. and Henin, C. (1974) Evaluation of risky investments with random timing of cash returns. Management Sci. 21, 7986.Google Scholar
Pisier, G. and Zinn, J. (1977) On limit theorems for random variables with values in the spaces LP. Z. Wahrscheinlichkeitsch. 41, 286305.Google Scholar
Puri, P. S. (1987) On almost sure convergence of an erosion process due to Todorovic and Gani. J. Appl. Prob. 24, 10011005.Google Scholar
Rachev, S. T. and Todorovic, P. (1990) On the rate of convergence of some functionals of a stochastic process. J. Appl. Prob. 28, 805814.Google Scholar
Todorovic, P. (1987) An extremal problem arising in soil erosion modeling. In Applied Probability, Stochastic Processes and Sampling Theory , ed. MacNeil, Ian B. and Umphrey, Gary J., pp. 6573. Reidel, Dordrecht.CrossRefGoogle Scholar
Todorovic, P. and Gani, J. (1987) Modeling of the effect of erosion on crop production. J. Appl. Prob. 24, 787797.Google Scholar
Uppuluri, V. R. R., Feder, P. I. and Shenton, L. R. (1967) Random difference equations occurring in one-compartment models. Math. Biosci. 2, 143171.Google Scholar
Vervaat, W. (1977) On records, maxima and stochastic difference equations. Report 7702, Mathematisch Institut, Katholieke Universiteit, Nijmegen, The Netherlands.Google Scholar
Vervaat, W. (1979) On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Prob. 11, 750783.Google Scholar
Whitt, W. (1980) Some useful functions for functional limit theorems. Math. Operat. Res. 5, 6785.Google Scholar