Article contents
Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes with infinite variance
Published online by Cambridge University Press: 29 April 2020
Abstract
We discuss the joint temporal and contemporaneous aggregation of N independent copies of random-coefficient AR(1) processes driven by independent and identically distributed innovations in the domain of normal attraction of an $\alpha$ -stable distribution, $0< \alpha \le 2$ , as both N and the time scale n tend to infinity, possibly at different rates. Assuming that the tail distribution function of the random autoregressive coefficient regularly varies at the unit root with exponent $\beta > 0$ , we show that, for $\beta < \max (\alpha, 1)$ , the joint aggregate displays a variety of stable and non-stable limit behaviors with stability index depending on $\alpha$ , $\beta$ and the mutual increase rate of N and n. The paper extends the results of Pilipauskaitė and Surgailis (2014) from $\alpha =2$ to $0 < \alpha < 2$ .
Keywords
MSC classification
- Type
- Original Article
- Information
- Copyright
- © Applied Probability Trust 2020
References
- 6
- Cited by