Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T12:47:55.107Z Has data issue: false hasContentIssue false

Large deviations for the empirical measure of heavy-tailed Markov renewal processes

Published online by Cambridge University Press:  19 September 2016

Mauro Mariani*
Affiliation:
Università degli Studi di Roma La Sapienza
Lorenzo Zambotti*
Affiliation:
Université Paris 6 ‒ Pierre et Marie Curie
*
* Postal address: Dipartimento di Matematica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Roma, Italy. Email address: mariani@mat.uniroma1.it
** Postal address: Laboratoire de Probabilités et Modèles Aléatoires (CNRS UMR. 7599), Université Paris 6 ‒ Pierre et Marie Curie, U.F.R. Mathématiques, Case 188, 4 place Jussieu, 75252 Paris cedex 05, France. Email address: lorenzo.zambotti@upmc.fr

Abstract

A large deviations principle is established for the joint law of the empirical measure and the flow measure of a Markov renewal process on a finite graph. We do not assume any bound on the arrival times, allowing heavy-tailed distributions. In particular, the rate function is in general degenerate (it has a nontrivial set of zeros) and not strictly convex. These features show a behaviour highly different from what one may guess with a heuristic Donsker‒Varadhan analysis of the problem.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Asmussen, S. (2003).Applied Probability and Queues (Appl. Math. (New York) 51),2nd edn.Springer,New York.Google Scholar
[2] Basile, G. and Bovier, A. (2010).Convergence of a kinetic equation to a fractional diffusion equation.Markov Process. Relat. Fields 16,1544.Google Scholar
[3] Bertini, L.,Faggionato, A. and Gabrielli, D. (2015).Large deviations of the empirical flow for continuous time Markov chains.Ann. Inst. H. Poincaré Prob. Statist. 51,867900.Google Scholar
[4] Brin, M. and Stuck, G.(2002).Introduction to Dynamical Systems.Cambridge University Press.Google Scholar
[5] Condamin, S. et al. (2008).Probing microscopic origins of confined subdiffusion by first-passage observables.Proc. Nat. Acad. Sci. USA 105,56755680.CrossRefGoogle ScholarPubMed
[6] Dembo, A. and Zeitouni, O. (1993).Large Deviations Techniques and Applications.Jones and Bartlett,Boston, MA.Google Scholar
[7] Den Hollander, F. (2000).Large Deviations(Fields Inst. Monogr. 14).American Mathematical Society,Providence, RI.Google Scholar
[8] Duffy, K. and Metcalfe, A. P. (2005).How to estimate the rate function of a cumulative process.J. Appl. Prob. 42,10441052.Google Scholar
[9] Duffy, K. and Rodgers-Lee, M. (2004).Some useful functions for functional large deviations.Stoch. Stoch. Reports 76,267279.Google Scholar
[10] Duffy, K. R.,Macci, C. and Torrisi, G. L. (2011).On the large deviations of a class of modulated additive processes.ESAIM Prob. Statist. 15,83109.Google Scholar
[11] Ganesh, A.,Macci, C. and Torrisi, G. L. (2005).Sample path large deviations principles for Poisson shot noise processes, and applications.Electron. J. Prob. 10,10261043.Google Scholar
[12] Kipnis, C. and Landim, C. (1999).Scaling Limits of Interacting Particle Systems.Springer,Berlin.Google Scholar
[13] Lefevere, R. and Zambotti, L. (2010).Hot scatterers and tracers for the transfer of heat in collisional dynamics.J. Statist. Phys. 139,686713.Google Scholar
[14] Lefevere, R.,Mariani, M. and Zambotti, L. (2011).Large deviations for renewal processes.Stoch. Process. Appl. 121,22432271.Google Scholar
[15] Lefevere, R.,Mariani, M. and Zambotti, L. (2011).Large deviations of the current in stochastic collisional dynamics.J. Math. Phys. 52, 033302.Google Scholar
[16] Maiboroda, R. E. and Markovich, N. M. (2004).Estimation of heavy-tailed probability density function with application to Web data.Comput. Statist. 19,569592.Google Scholar
[17] Russell, R.(1997).The large deviations of random time-changes. Doctoral Thesis, Trinity College Dublin.Google Scholar