Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T08:40:49.668Z Has data issue: false hasContentIssue false

Linking representations for multivariate extremes via a limit set

Published online by Cambridge University Press:  13 June 2022

Natalia Nolde*
Affiliation:
University of British Columbia
Jennifer L. Wadsworth*
Affiliation:
Lancaster University
*
*Postal address: Department of Statistics, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada. Email address: natalia@stat.ubc.ca
**Postal address: Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster, LA1 4YF, UK. Email address: j.wadsworth@lancaster.ac.uk

Abstract

The study of multivariate extremes is dominated by multivariate regular variation, although it is well known that this approach does not provide adequate distinction between random vectors whose components are not always simultaneously large. Various alternative dependence measures and representations have been proposed, with the most well-known being hidden regular variation and the conditional extreme value model. These varying depictions of extremal dependence arise through consideration of different parts of the multivariate domain, and particularly through exploring what happens when extremes of one variable may grow at different rates from other variables. Thus far, these alternative representations have come from distinct sources, and links between them are limited. In this work we elucidate many of the relevant connections through a geometrical approach. In particular, the shape of the limit set of scaled sample clouds in light-tailed margins is shown to provide a description of several different extremal dependence representations.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdous, B., Fougères, A.-L. and Ghoudi, K. (2005). Extreme behaviour for bivariate elliptical distributions. Canad. J. Statist. 33, 317334.CrossRefGoogle Scholar
Balkema, A. A., Embrechts, P. and Nolde, N. (2010). Meta densities and the shape of their sample clouds. J. Multivariate Anal. 101, 17381754.CrossRefGoogle Scholar
Balkema, G. and Embrechts, P. (2007). High Risk Scenarios and Extremes: A Geometric Approach. European Mathematical Society, Zurich.CrossRefGoogle Scholar
Balkema, G. and Nolde, N. (2010). Asymptotic independence for unimodal densities. Adv. Appl. Prob. 42, 411432.CrossRefGoogle Scholar
Balkema, G. and Nolde, N. (2012). Asymptotic dependence for homothetic light-tailed densities. Adv. Appl. Prob. 44, 506527.CrossRefGoogle Scholar
Balkema, G. and Nolde, N. (2020). Samples with a limit shape, multivariate extremes, and risk. Adv. Appl. Prob. 52, 491522.CrossRefGoogle Scholar
Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intellig. 32, 245268.CrossRefGoogle Scholar
Bedford, T. and Cooke, R. M. (2002). Vines: a new graphical model for dependent random variables. Ann. Statist. 30, 10311068.CrossRefGoogle Scholar
Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. L. (2004). Statistics of Extremes: Theory and Applications. John Wiley, New York.CrossRefGoogle Scholar
Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. J. R. Statist. Soc. B 53, 377392.Google Scholar
Das, B. and Resnick, S. I. (2011). Conditioning on an extreme component: model consistency with regular variation on cones. Bernoulli 17, 226252.CrossRefGoogle Scholar
Davis, R. A., Mulrow, E. and Resnick, S. I. (1988). Almost sure limit sets of random samples in $ \mathbb{R}^d$ . Adv. Appl. Prob. 20, 573599.CrossRefGoogle Scholar
De Haan, L. (1970). On Regular Variation and Its Application to Weak Convergence of Sample Extremes. Mathematisch Centrum, Amsterdam.Google Scholar
De Valk, C. (2016). Approximation and estimation of very small probabilities of multivariate extreme events. Extremes 19, 687717.CrossRefGoogle Scholar
De Valk, C. (2016). Approximation of high quantiles from intermediate quantiles. Extremes 19, 661686.CrossRefGoogle Scholar
Engelke, S. and Hitz, A. S. (2020). Graphical models for extremes (with discussion). J. R. Statist. Soc. B 82, 871932.CrossRefGoogle Scholar
Engelke, S., Opitz, T. and Wadsworth, J. (2019). Extremal dependence of random scale constructions. Extremes 22, 623666.CrossRefGoogle Scholar
Fisher, L. (1969). Limiting sets and convex hulls of samples from product measures. Ann. Math. Statist. 40, 18241832.CrossRefGoogle Scholar
Fougères, A.-L. and Soulier, P. (2010). Limit conditional distributions for bivariate vectors with polar representation. Stoch. Models 26, 5477.CrossRefGoogle Scholar
Geffroy, J. (1958). Contribution à la théorie des valeurs extrêmes. Publ. Inst. Statist. Univ. Paris VII, 37–121.Google Scholar
Geffroy, J. (1959). Contribution à la théorie des valeurs extrêmes (deuxième partie). Publ. Inst. Statist. Univ. Paris VIII, 3–65.Google Scholar
Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423453.CrossRefGoogle Scholar
Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris 9, 171173.Google Scholar
Heffernan, J. E. and Resnick, S. I. (2007). Limit laws for random vectors with an extreme component. Ann. Appl. Prob. 17, 537571.CrossRefGoogle Scholar
Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values (with discussion). J. R. Statist. Soc. B 66, 497546.CrossRefGoogle Scholar
Huser, R. and Wadsworth, J. L. (2019). Modeling spatial processes with unknown extremal dependence class. J. Amer. Statist. Assoc. 114, 434444.CrossRefGoogle Scholar
Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: between independence and complete dependence. Statist. Prob. Lett. 7, 283286.CrossRefGoogle Scholar
Joe, H. (1996). Families of m-variate distributions with given margins and $ m(m-1)/2$ bivariate dependence parameters. In Distributions with Fixed Marginals and Related Topics (Lecture Notes—Monogr. Ser. Vol. 28), Institute of Mathematical Statistics, Hayward, CA, pp. 120–141.CrossRefGoogle Scholar
Keef, C., Papastathopoulos, I. and Tawn, J. A. (2013). Estimation of the conditional distribution of a multivariate variable given that one of its components is large: additional constraints for the Heffernan and Tawn model. J. Multivariate Anal. 115, 396404.CrossRefGoogle Scholar
Kinoshita, K. and Resnick, S. I. (1991). Convergence of scaled random samples in $ \mathbb{R}^d$ . Ann. Prob. 19, 16401663.CrossRefGoogle Scholar
Kulik, R. and Soulier, P. (2020). Heavy-Tailed Time Series. Springer, New York.CrossRefGoogle Scholar
Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.CrossRefGoogle Scholar
Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika 83, 169187.CrossRefGoogle Scholar
Ledford, A. W. and Tawn, J. A. (1997). Modelling dependence within joint tail regions. J. R. Statist. Soc. B 59, 475499.CrossRefGoogle Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
Nolde, N. (2014). Geometric interpretation of the residual dependence coefficient. J. Multivariate Anal. 123, 8595.CrossRefGoogle Scholar
Ramos, A. and Ledford, A. (2009). A new class of models for bivariate joint tails. J. R. Statist. Soc. B 71, 219241.CrossRefGoogle Scholar
Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.CrossRefGoogle Scholar
Resnick, S. (2002). Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5, 303336.CrossRefGoogle Scholar
Resnick, S. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York.Google Scholar
Seifert, M. I. (2014). On conditional extreme values of random vectors with polar representation. Extremes 17, 193219.CrossRefGoogle Scholar
Simpson, E. S., Wadsworth, J. L. and Tawn, J. A. (2020). Determining the dependence structure of multivariate extremes. Biometrika 107, 513532.CrossRefGoogle Scholar
Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77, 245253.CrossRefGoogle Scholar
Wadsworth, J. and Tawn, J. (2013). A new representation for multivariate tail probabilities. Bernoulli 19, 26892714.CrossRefGoogle Scholar
Wadsworth, J. and Tawn, J. (2019). Higher-dimensional spatial extremes via single-site conditioning. Preprint. Available at https://arxiv.org/abs/1912.06560.Google Scholar