Published online by Cambridge University Press: 01 July 2016
In this paper we introduce certain Hankel matrices that can be used to study ME (matrix exponential) distributions, in particular to compute their ME orders. The Hankel matrices for a given ME probability distribution can be constructed if one of the following five types of information about the distribution is available: (i) an ME representation, (ii) its moments, (iii) the derivatives of its distribution function, (iv) its Laplace-Stieltjes transform, or (v) its distribution function. Using the Hankel matrices, a necessary and sufficient condition for a probability distribution to be an ME distribution is found and a method of computing the ME order of the ME distribution developed. Implications for the PH (phase-type) order of PH distributions are examined. The relationship between the ME order, the PH order, and a lower bound on the PH order given by Aldous and Shepp (1987) is discussed in numerical examples.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.