While the general principles involved in the formulation of random walk and Brownian motion equations (whether the random changes are directly on the position of a particle or individual, or on the velocity) are well-known, there are various situations considered in the literature involving the assumption of a constant speed (in magnitude). Thus the derivation by Goldstein (1951) of a one-dimensional wave-like equation involved the tacit assumption Ut = ± a, where Ut is the vector velocity dRt/dt,Rt being the (column) position vector (Bartlett (1957)). Biological models may involve the assumption of individuals moving at constant speed (cf. Kendall (1974)). Finally, the derivation of Schrodinger-type equations from Brownian motion models has sometimes involved the assumption U′tUt = c2, where c is the velocity of light (Cane (1967), (1975)).