Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T15:11:13.977Z Has data issue: false hasContentIssue false

The Basics of Least Cost Analysis for Archaeological Applications

Published online by Cambridge University Press:  16 January 2017

Devin Alan White*
Affiliation:
Oak Ridge National Laboratory, PO Box 2008, MS-6017, Oak Ridge, TN 37831-6017 (whiteda1@ornl.gov)

Abstract

Least Cost Analysis (LCA) is a geospatially focused quantitative approach that can help archaeologists better understand how people may have moved across a landscape. At its core is the assumption that humans make decisions about movement as fully rational actors with complete knowledge of the landscape, attempting to minimize the cost of that movement as they travel from one location to another. LCA is most often used to construct a small number of hypothetical routes between locations of interest and, when used effectively, can even lead to the creation of entire transportation networks. Desktop GIS software packages, both commercial and open source, make running LCA relatively straightforward, but that does not necessarily mean that the output is informative or accurate. The following tutorial is designed to expose the reader to the foundational steps required to complete an LCA workflow, along with the scientific rationale behind each step and how to avoid potential pitfalls that one might run into along the way. Relevant literature is cited throughout the tutorial in order to provide context for the technical methods that underpin available tools, to suggest various ways that LCA can be used to solve archaeological problems, and to show the art of the possible.

El análisis del menor costo (Least Cost Analysis-LCA) es una herramienta cuantitativa geoespacial, que puede ayudar a los arqueólogos a entender mucho mejor como las personas pudieron haberse trasladado por un territorio. Su fundamento está basado en el supuesto de que, los seres humanos, como actores, toman decisiones plenamente racionales en torno a su traslado, con conocimiento pleno del terreno, tratando de minimizar el costo del traslado cuando viajan de un lugar a otro. A menudo, el análisis del menor costo se utiliza para generar un número reducido de rutas hipotéticas entre dos puntos de interés y que, de aprovechar su capacidad eficazmente, pueden inclusive derivar en un definición completa de redes de transportación. La paquetería de escritorio para programas de Sistema de Información Geográfica (SIG), tanto comerciales como de código abierto, permiten correr el análisis del menor costo de manera relativamente sencilla, mas esto no significa que el resultado sea significativo o correcto. La siguiente guía se ha diseñado para presentarle al lector los pasos fundamentales para llevar acabo el flujo de trabajo que requiere el análisis del menor costo, el razonamiento científico que sustenta a cada uno de ellos, incluyendo el como evitar desafíos que pudieran surgir sobre la marcha. A lo largo de la guía, se cita la literatura pertinente con el propósito de contextualizar cada unidad técnica que respalda las herramientas disponibles, para ejemplificar distintas formas en las que el análisis de menor costo puede utilizarse para resolver problemas arqueológicos y con ello mostrar el arte de lo posible.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Bell, Tyler, and Lock, Gary 2000 Topographic and Cultural Influences on Walking the Ridgeway in Later and Prehistoric Times. In Beyond the Map: Archaeology and Spatial Technologies, edited by Lock, Gary, pp. 85100. IOS Press, Omaha, Nebraska. Google Scholar
Branting, Scott 2004 Iron Age Pedestrians at Kerkenes Dag: An Archaeological GIS-T Approach to Movement and Transportation. Ph.D. Dissertation, Department of Anthropology, State University of New York at Buffalo.Google Scholar
Branting, Scott 2012 Seven Solutions for Seven Problems with Least Cost Pathways. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 209224. University of Utah Press, Salt Lake City, Utah.Google Scholar
Dijkstra, Edsger 1959 A Note on Two Problems in Connection with Graphs. Numerische Mathematik 1:269271.Google Scholar
Fábrega-Álvarez, Pastor 2006 Moving without Destination: A Theoretical, GIS-Based Determination of Routes (Optimal Accumulation Model of Movement from a Given Origin). Archaeological Computing Newsletter 64:711.Google Scholar
Gietl, Rupert, Doneus, Michael, and Fera, Martin 2008 Cost Distance Analysis in an Alpine Environment: Comparison of Different Cost Surface Modules. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology. Berlin, Germany.Google Scholar
Güimil-Fariña, Alejandro, and Parcero-Oubiña, César 2015 “Dotting the Joins”:A Non-reconstructive Use of Least Cost Paths to Approach Ancient Roads. The Case of the Roman Roads in the NW Iberian Peninsula. Journal of Archaeological Science 54:3144.Google Scholar
Howey, Meghan C.L. 2011 Multiple Pathways across Past Landscapes: Circuit Theory as a Complementary Geospatial Method to Least Cost Path for Modeling Past Movement. Journal of Archaeological Science 38:25232535.CrossRefGoogle Scholar
Hudson, Erin J. 2012 Walking and Watching: New Approaches to Reconstructing Cultural Landscapes through Space Syntax Analysis. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 97108. University of Utah Press, Salt Lake City, Utah.Google Scholar
Kantner, John 2012 Realism, Reality, and Routes: Evaluating Cost-Surface and Cost-Path Algorithms. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 225238. University of Utah Press, Salt Lake City, Utah.Google Scholar
Livingood, Patrick 2012 No Crows Made Mounds: Do Cost-Distance Calculations of Travel Time Improve Our Understanding of Southern Appalachian Polity Size? In Least Cost Analysis of Social Landscapes, edited by White, D. A. and Surface-Evans, S. L., pp. 174187. University of Utah Press, Salt Lake City, Utah.Google Scholar
Llobera, Marcos, Fábrega-Álvarez, Pastor, and Parcero-Oubiña, César 2011 Order in Movement: a GIS Approach to Accessibility. Journal of Archaeological Science 38:843851.CrossRefGoogle Scholar
Map Aspects 2009 Cost-Distance 2009:Cost-Distance Analysis. Electronic document, http://mapaspects.org/node/3744, accessed June 16, 2015.Google Scholar
Newhard, J.M.L., Levine, N.S., and Phebus, A.D. 2014 The Development of Integrated Terrestrial and Marine Pathways in the Argo-Saronic Region, Greece. Cartography and Geographic Information Science 41:379390.Google Scholar
Pelletier, David, Clark, Melissa, Anderson, Mark G., Rayfield, Bronwyn, Wulder, Michael A., and Cardille, Jeffrey A. 2014 Applying Circuit Theory for Corridor Expansion and Management at Regional Scales: Tiling, Pinch Points, and Omnidirectional Connectivity. PLoS ONE 9(1):e84135.CrossRefGoogle ScholarPubMed
Phillips, Shaun M., and Leckman, Phillip O. 2012 Wandering the Desert: Least Cost Path Modeling for Water Transport Trails in the Jornada Mogollon Region, Fort Bliss, South-Central New Mexico. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 4666. University of Utah Press, Salt Lake City, Utah.Google Scholar
Rademaker, Kurt, Reid, David A., and Bromley, Gordon R.M. 2012 Connecting the Dots: Least Cost Analysis, Paleogeography, and the Search for Paleoindian Sites in Southern Highland Peru. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 3245. University of Utah Press, Salt Lake City, Utah.Google Scholar
Rees, W. G. 2004 Least-Cost Paths in Mountainous Terrain. Computers & Geosciences 30(3):203209.Google Scholar
Richards-Risetto, Heather 2012 Social Interaction at the Maya Site of Copán, Honduras: A Least Cost Approach to Configurational Analysis. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 109127. University of Utah Press, Salt Lake City, Utah.Google Scholar
Sampeck, Kathryn, Thayn, Jonathan, and Earnest, Howard H. Jr. 2015 Geographic Information System Modeling of De Soto’s Route from Joara to Chiaha: Archaeology and Anthropology of Southeastern Road Networks in the Sixteenth Century. American Antiquity 80:4666.Google Scholar
Surface-Evans, Sarah L. 2012 Cost Catchments: A Least Cost Application for Modeling Hunter-Gatherer Land Use. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 128154. University of Utah Press, Salt Lake City, Utah.Google Scholar
Tobler, Waldo 1993 Three Presentations on Geographical Analysis and Modeling. Technical Report 93-1. National Center for Geographic Information and Analysis.Google Scholar
Ullah, Isaac I., and Bergin, Sean M. 2012 Modeling the Consequences of Village Site Location: Least Cost Path Modeling in a Coupled GIS and Agent-Based Model of Village Agropastoralism in Eastern Spain. In Least Cost Analysis of Social Landscapes, edited byedited by White, Devin A. and Surface-Evans, Sarah L., pp. 155173. University of Utah Press, Salt Lake City, Utah.Google Scholar
White, Devin A. 2012 Prehistoric Trail Networks of the Western Papaguería: A Multifacted Least Cost Graph Theory Analysis. In Least Cost Analysis of Social Landscapes, edited by White, Devin A. and Surface-Evans, Sarah L., pp. 188208. University of Utah Press, Salt Lake City, Utah.Google Scholar
White, Devin A., and Barber, Sarah B. 2012 Geospatial Modeling of Pedestrian Transportation Networks: a Case Study from Precolumbian Oaxaca, Mexico. Journal of Archaeological Science 39:2684–2696.Google Scholar
Whitley, Thomas G., and Hicks, Lacey M. 2003 A Geographic Information Systems Approach to Understanding Potential Prehistoric and Historic Travel Corridors. Southeastern Archaeology 22:7791.Google Scholar