Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T19:39:12.813Z Has data issue: false hasContentIssue false

Progression and Issues in the Mesoamerican Geospatial Revolution

An Introduction

Published online by Cambridge University Press:  16 January 2017

Arlen F. Chase
Affiliation:
Department of Anthropology, University of Nevada, Las Vegas, Box 455003, 4505 S. Maryland Parkway, Las Vegas, NV 89154-5003
Kathryn Reese-Taylor
Affiliation:
Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada
Juan C. Fernandez-Diaz
Affiliation:
National Center for Airborne Laser Mapping, University of Houston, 5000 Gulf Freeway, Houston, TX 77204-5059
Diane Z. Chase
Affiliation:
Office of the Executive Vice President and Provost, University of Nevada, Las Vegas, Box 451002 (FDH 752), 4505 S. Maryland Parkway, Las Vegas, NV 89154-1002

Abstract

The use of airborne mapping lidar (Light Detection and Ranging), a.k.a airborne laser scanning (ALS), has had a major impact on archaeological research being carried out in Mesoamerica. Since being introduced in 2009, mapping lidar has revolutionized the spatial parameters of Mesoamerican, and especially Maya, archaeology by permitting the recovery of a complete landscape and settlement pattern for further analysis. However, like any new technology, there are learning curves to be overcome, resulting in a feedback relationship between the on-the-ground archaeologists, the virtually grounded computer analysts, and the instrument designers. Archaeologists have been able to identify problems and issues with data production and visualization for the determination of archaeological remains caused by vegetation, special terrain conditions, and modern disturbance. The identification of these concerns helps the technician to develop new techniques, especially when working in conjunction with the field researcher. As seen through the papers in this volume, this symbiotic relationship promises to yield both new breakthroughs in landscape and settlement analysis for Mesoamerican archaeology and enhanced analytic and visualization techniques for lidar with the potential for applicability in other contexts. In many regards, the development of lidar has parallels to the development of radiocarbon dating as a revolutionary technology.

El uso de lidar de mapeo aéreo-trasportado ha tenido un impacto muy significativo en la investigación arqueológica que se lleva a cabo en Mesoamérica. Desde su introducción a la practica en el 2009, el lidar de mapeo ha revolucionado los parámetros espaciales de la arqueología Mesoamericana, en especial la de los Mayas, permitiendo capturar completamente la topografía y los patrones de asentamiento para análisis posteriores. Sin embargo, como con cualquier otra tecnología, hay curvas de aprendizaje que tiene que superarse, lo que resulta en una relación de retroalimentación entre los arqueólogos en el campo y los analistas y técnicos informáticos en el campo virtual, así como también con los diseñadores de instrumentos. Los arqueólogos han sido capaces de identificar problemas en la producción y visualización de los datos para la identificación de remanentes arqueológicos, problemas que son causados por la vegetación, condiciones particulares del terreno y perturbaciones modernas. La identificación de estos aspectos ayudan a los técnicos a desarrollar nuevas técnicas, en especial cuando se trabaja en conjunción con el investigador de campo. Como se verá en los artículos publicados en este volumen, esta relación simbiótica promete producir nuevos desarrollos en el análisis de los asentamientos y la topografía aplicado a la arqueología mesoamericana así como también desarrollos de técnicas mejoradas para el análisis y la visualización de datos de lidar con potencial para ser aplicados en otros contextos. En múltiples maneras, la evolución del lidar tiene muchos paralelos con la evolución del fechado por radiocarbono como una tecnología revolucionaria.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldana, Gerardo 2015 14C and Maya Long Count Dates: Using Bayesian Modelling to Develop Robust Site Chronologies. Archaeometry DOI: 10.1111/arcm.12200, pp. 1–18.Google Scholar
Anderson, E.C., Libby, Williard F., Weinhouse, S., Reid, A.F., Kirshenbaum, A.D., and Grosse, A.V. 1947 $Radiocarbon from Cosmic Radiation. Science 105:576.Google Scholar
Anderson, John, Massaro, R., Lewis, L., Moyers, R., and Wilkins, J. 2010 Lidar-Activated Phosphors and Infrared Retro-Reflectors: Emerging Target Materials for Calibration and Control. Photogrammetric Engineering & Remote Sensing August:875–879.Google Scholar
Arnold, James R., and Libby, Willard F. 1949 Age-Determination by Radiocarbon Content: Checks with Samples of Known Age. Science 110:678680.CrossRefGoogle Scholar
Bayliss, Alex 2009 Rolling Out Revolution: Using Radiocarbon Dating in Archaeology. Radiocarbon 51:123147.Google Scholar
Bayliss, Alex 2015 Quality in Bayesian Chronological Models in Archaeology. World Archaeology 47(4):677700.Google Scholar
Carr, Robert F., and Hazard, James E. 1961 Map of the Ruins of Tikal, El Peten, Guatemala. Tikal Report 11. University Museum Monograph, University of Pennsylvania Museium of Archaeology and Anthropology, Philadelphia.Google Scholar
Carter, William E., Shrestha, Ramesh L., and Fernandez-Diaz, Juan Carlos 2016 Archaeology from the Air. American Scientist 104, in press.Google Scholar
Challis, Keith, Forlin, Paolo, and Kincey, Mark 2011 A Generic Toolkit for the Visualization of Archaeological Features on Airborne Lidar Elevation Data. Archaeological Prospection 18:279289.CrossRefGoogle Scholar
Chase, Arlen F. 1986 Time Depth or Vacuum: The 11.3.0.0.0. Correlation and the Lowland Maya Postclassic. In Late Lowland Maya Civilization: Classic to Postclassic, edited by Sabloff, Jeremy A. and Andrews, E. Wyllys V, pp. 99140. University of New Mexico Press, Albuquerque.Google Scholar
Chase, Arlen F., and Chase, Diane Z. 2001 Ancient Maya Causeways and Site Organization at Caracol, Belize. Ancient Mesoamerica 12(2):273281.Google Scholar
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, and Brown, M. Kathryn 2014 The Use of Lidar in Understanding the Ancient Maya Landscape: Caracol and Western Belize. Advances in Archaeological Practice 2: 208221.CrossRefGoogle Scholar
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, Brown, M. Kathryn, Shrestha, Ramesh L., Carter, William E., and Fernandez-Diaz, Juan 2014 Ancient Maya Regional Settlement and Inter-site Analysis: The 2013 West-Central Belize Lidar Survey. Remote Sensing 6(9): 86718695.CrossRefGoogle Scholar
Chase, Arlen F., Chase, Diane Z., Fisher, Christopher T., Leisz, Stephen J., and Weishampel, John F. 2012 Geospatial Revolution and Remote Sensing Lidar in Mesoamerican Archaeology. PNAS 109(32): 1291612921.CrossRefGoogle ScholarPubMed
Chase, Arlen F., Chase, Diane Z., and Weishampel, John F. 2010 Lasers in the Jungle: Airborne Sensors Reveal a Vast Maya Landscape. Archaeology 63(4):2729.Google Scholar
Chase, Arlen F., Chase, Diane Z., and Weishampel, John F. 2013 The Use of Lidar at the Maya site of Caracol, Belize. In Mapping Archaeological Landscapes from Space, edited by Comer, D. and Harrorer, M., pp. 179189. Springer, New York.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne Lidar, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38:387398.Google Scholar
Chase, Diane Z., Chase, Arlen F., Awe, Jaime J., Walker, John H., and Weishampel, John F. 2011 Airborne Lidar at Caracol, Belize and the Interpretation of Ancient Maya Society and Landscapes. Research Reports in Belizean Archaeology 8:6173.Google Scholar
Clark, J. Desmond 1979 Radiocarbon Dating and African Archaeology. In Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla 1976, edited by Berger, Rainer and Suess, Hans E., pp. 731. University of California Press, Berkeley.Google Scholar
Comer, Douglas C., and Harrower, Michael (editors) 2013 Mapping Archaeological Landscapes from Space. Springer, New York.Google Scholar
Crow, Peter S., Benham, Sue, Devereux, B. J., and Amable, Gabriel S. 2007 Woodland Vegetation and Its Implications for Archaeological Survey Using LiDAR. Forestry 80(3):241252.CrossRefGoogle Scholar
Currie, Lloyd A. 2004 The Remarkable Metrological History of Radiocarbon Dating [II]. Journal of Research of the National Institute of Standards and Technology 109(2):185217.CrossRefGoogle ScholarPubMed
Devereaux, B.J., Amable, Gabriel S., Crow, Peter S., and Cliff, A.D. 2005 The Potential of Airborne Lidar for Detection of Archaeological Features under Woodland Canopies. Antiquity 79:648660.CrossRefGoogle Scholar
Evans, Damien H., Roland J., Fletcher, Christophe, Pottier, Jean-Baptiste, Chevance, Soutif, Dominique, Tan, Boun Suy, Im, Sokrithy, Ea, Arith, Tin, Tina, Kim, Samnang, Cromarty, Christopher, Greef, Stephane De, Hanus, Kasper, Baty, Pierre, Kuszinger, Robert, Shimoda, Ichita, and Boornazian, Glenn 2013 Uncovering Archaeological Landscapes at Angkor using Lidar. PNAS 110(31):1259512600.CrossRefGoogle ScholarPubMed
Juan C., Fernandez-Diaz, Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2013 Lidar Remote Sensing. In Handbook of Satellite Applications, edited by Pelton, J., Madry, S., and Camacho-Lara, S., pp. 757808. Springer New York.Google Scholar
Juan C., Fernandez-Diaz, Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2014 Now You See It… Now You Don’t: Understanding Airborne Mapping Lidar Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing 6(10):995110001.Google Scholar
Juan C., Fernandez-Diaz, Carter, William E., Shrestha, Ramesh L., Leisz, Steve J., Fisher, Christopher T., Gonzalez, Alicia M., Thompson, Dan, Elkins, Steve 2014 Archaeological Prospection of North Eastern Honduras with Airborne Mapping Lidar. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp. 902905, 13–18 July 2014.Google Scholar
Fisher, Christopher T., Leisz, Stephen, and Outlaw, G. 2011 Lidar—A Valuable Tool Uncovers an Ancient City in Mexico. Photogrammetric Engineering and Remote Sensing 77(10):962967.Google Scholar
Folan, William J., Fletcher, Larraine A., Hau, Jacinto May, and Folan, Lynda Florey 2001 Las Ruinas de Calakmul, Campeche, Mexico: Un lugar central y su paisaje cultural. Universidad Autonoma de Campeche, Campeche, Mexico. Ford, Anabel Google Scholar
Folan, William J., Fletcher, Larraine A., Hau, Jacinto May, and Folan, Lynda Florey 2014 Using Cutting-Edge Lidar Technology at El Pilar Belize-Guatemala in Discovering Ancient Maya Sites – There Is Still a Need for Archaeologists!. Research Reports in Belizean Archaeology 12:271280.Google Scholar
Garza Taranzona de Gonzalez, Silvia, and Kurjack, Edward B. 1980 Atlas Arqueologico del Estado de Yucatan. 2 vols. Instituto Nacional de Antropologia e Historia, Mexico.Google Scholar
Glennie, Craig L., Carter, William E., Shrestha, Ramesh L., and Dietrich, William E. 2013 Geodetic Imaging with Airborne Lidar: The Earth's Surface Revealed. Reports on Progress in Physics 76:086801.Google Scholar
Godwin, Harold 1962 Half-Life of Radiocarbon. Nature 195:984.Google Scholar
Goyer, G. G., and Watson, R. 1963 The Laser and Its Application to Meteorology. Bulletin of the American Meteorological Society 44(9):564575.CrossRefGoogle Scholar
Gutierrez, Roberto, Gibeaut, James C., Smyth, Rebecca C.L., Hepner, Tiffany, and Andrews, John R. 2001 Precise Airborne Lidar Surveying for Coastal Research and Geohazards Applications. International Archives of Photogrammetry and Remote Sensing 34(3):185192.Google Scholar
Hanus, Kasper, and Evans, Damien 2015 Imaging the Waters of Angkor: A Method for Semi-Automated Point Extraction from Lidar Data. Archaeological Prospection DOI: 10.1002/arp.1530.Google Scholar
Hare, Timothy, Masson, Marilyn, and Russel, B. 2014 High-Density Lidar Mapping of the Ancient City of Mayapan. Remote Sensing 6:90649085.Google Scholar
Hightower, Jessica N., Butterfield, A. Christine, and Weishampel, John F. 2014 Quantifying Ancient Maya Land Use Legacy Effects on Contemporary Rainforest Canopy Structure. Remote Sensing 6:1071610732.CrossRefGoogle Scholar
Hutson, Scott R. 2015 Adapting Lidar Data for Regional Variation in the Tropics: A Case Study from the Northern Maya Lowlands. Journal of Archaeological Science: Reports 4:252263.Google Scholar
Hutson, Scott R., Hixson, David R., Magnoni, Alaine, Mazeau, David, and Dahlin, Bruce H. 2008 Site and Community at Chunchucmil and Ancient Maya Urban Centers. Journal of Field Archaeology 22:1940.CrossRefGoogle Scholar
Kennett, Douglas J., Hajdas, Irka, Culleton, Brendan J., Belmecheri, Soumaya, Martin, Simon, Neff, Hector, Awe, Jaime, Graham, Heather V., Freeman, Katherine H., Newsom, Lee, Lentz, David L., Anselmetti, Flavio S., Robinson, Mark, Marwan, Norbert, Southon, John, Hodell, David A., and Haug, Gerald H. 2013 Correlating the Ancient Maya and Modern European Calendars with High-Precision AMS 14C Dating. Nature Scientific Reports 3:15.Google Scholar
Klein, Jeffrey, Lerman, Juan-Carlos, Damon, Paul E., and Ralph, Elizabeth K. 1982 Calibration of Radiocarbon Dates: Tables Based on the Consensus Data of the Workshop on Calibrating the Radiocarbon Time Scale. Radiocarbon 24(2):103150.CrossRefGoogle Scholar
Libby, Willard F. 1946 Atmospheric Helium-3 and Radiocarbon from Cosmic Radiation. Physics Review 69:671672.CrossRefGoogle Scholar
Libby, Willard F. 1952 Radiocarbon Dating. University of Chicago Press, Chicago.Google Scholar
Lucero, Lisa J., Fletcher, Roland, and Coningham, Robin 2015 From “Collapse” to Urban Diaspora: The Transformation of Low-Density, Dispersed Agrarian Urbanism. Antiquity 89:11391154.CrossRefGoogle Scholar
Olsson, Ingrid U. 1970 Ed., Radiocarbon Variations and Absolute Chronology (12th Nobel Symposium). Almquist & Wiksell, Stockholm.Google Scholar
Opitz, Rachel S., and Cowley, David C. (editors) 2013 Interpreting Archaeological Topography: 3D Visualisation and Observation. Oxford Books, Oxford.Google Scholar
Pingel, Thomas J., Clarke, Keith, and Ford, Anabel 2015 Bonemapping: A Lidar Processing and Visualization Technique in Support of Archaeology under the Canopy. Cartography and Geographic Information Science 42(S1):S18-S26.CrossRefGoogle Scholar
Preston, Douglas 2013 The El Dorado Machine: A New Scanner's Rain-Forest Discoveries. The New Yorker May 6:3440.Google Scholar
Prufer, Keith M., Thompson, Amy E., and Kennett, Douglas J. 2015 Evaluating Airborne Lidar for Detecting Settlements and Modified Landscapes in Disturbed Tropical Environments at Uxbenka, Belize. Journal of Archaeological Science 57:113.Google Scholar
Puleston, Dennis E. 1983 The Settlement survey of Tikal. University Museum Monograph 48. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.CrossRefGoogle Scholar
Ralph, Elizabeth K. 1965 Review of Radiocarbon Dates from Tikal and the Maya Calendar Correlation Problem. American Antiquity 30(4):421427.CrossRefGoogle Scholar
Ramsey, Christopher B. 1995 Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program. Radiocarbon 37(2):425430.Google Scholar
Renfrew, Colin 1973 Before Civilization: The Radiocarbon Revolution and Prehistoric Europe. Alfred A. Knopf, New York.Google Scholar
Renslow, Michael S. 2012 Manual of Airborne Topogrpahic Lidar. American Society for Photogrammetry and Remote Sensing, Bethesda MD.Google Scholar
Ring, Jeremy 1963 The Laser in Astronomy. New Scientist 344:672673.Google Scholar
Robertson, F.I., and Kaula, W.M. 1972 Apollo 15 Laser Altimeter, Part D, Section 25, Apollo 15 Preliminary Science Report. NASA SP-289Google Scholar
Rosenswig, Robert M., Lopez-Torrijos, Ricardo, and Antonelli, Caroline E. 2015 Lidar Data and the Izapa Polity: New Results and Methodological Issues from Tropical Mesoamerica. Archaeological and Anthropological Sciences 7(4):487504. doi:10.1007/s12520-014-0210-7.CrossRefGoogle Scholar
Rosenswig, Robert M., Lopez-Torrijos, Ricardo, Antonelli, Caroline E., and Mendelsohn, Rebecca R. 2013 Lidar Mapping and Surface Survey of the Izapa State on the Tropical Piedmont of Chiapas, Mexico. Journal of Archaeological Science 40:14931507.CrossRefGoogle Scholar
Satterthwaite, Linton, and Ralph, Elizabeth K. 1960 New Radiocarbon Dates and the Maya Correlation Problem. American Antiquity 26:165184.Google Scholar
Schwerin, Jennifer von, Richards-Rissetto, Heather, Remondino, Fabio, Spera, Maria Grazia, Auer, Michael, Billen, Nicolas, Loos, Lukas, Stelson, Laura, and Reindel, Markus 2016 Airborne Lidar Acquisition, Post-Processing and Accuracy-Checking for a 3D WebGIS of Copan, Honduras. Journal of Archaeological Science: Reports 5:85104.Google Scholar
Stuart, George 1979 Map of the Ruins of Dzibilchaltun, Yucatan, Mexico. MARI Publication 47. Tulane University, New Orleans.Google Scholar
Stuckenrath, Robert 1965 On the Care and Feeding of Radiocarbon Dates. Archaeology 18(4):277281.Google Scholar
Stuiver, Minze 1965 Carbon-14 Content of 18th and 19th-Century Wood: Variations Correlated with Sunspot Activity. Science 149:533535.CrossRefGoogle Scholar
Stuiver, Minze 1971 Evidence for the Variation of Atmospheric 14C Content in the Late Quaternary. In The Late Cenozoic Glacial Ages, edited by Flint, Richard F. and Turekian, Karl K., pp. 5770. Yale University Press, New Haven.Google Scholar
Stuiver, Minze, and Suess, H.E. 1966 On the Relationship Between Radiocarbon Dates and True Sample Ages. Radiocarbon 8:534540.Google Scholar
Suess, Hans E. 1955 Radiocarbon Concentration in Modern Wood. Science 122:415417.CrossRefGoogle Scholar
Suess, Hans E. 1965 Secular Variation of the Cosmic-Ray Produced Carbon 14 in the Atmosphere and their Interpretations. Journal of Geophysical Research 70:59375951.CrossRefGoogle Scholar
Synge, E. H. 1930 XCI. A Method of Investigating the Higher Atmosphere. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 9(60):10141020.Google Scholar
Theodorsson, Pall 1991 Gas Proportional Versus Liquid Scintillation Counting, Radiometric Versus AMS Dating. Radiocarbon 33(1):913.Google Scholar
Thompson, Amy E., and Prufer, Keith M. 2015 Airborne Lidar for Detecting Ancient Settlements and Landscape Modifications at Uxbenka, Belize. Research Reports in Belizean Archaeology 12:251259.Google Scholar
Tuve, Merle Antony, Johnson, E.A. and Wulf, O.R. 1935 A New Experimental Method for Study of the Upper Atmosphere. Terrestrial Magnetism and Atmospheric Electricity 40(4):452454.CrossRefGoogle Scholar
Webster, David, Murtha, Timothy, Straight, Kirk D., Silverstein, Jay, Martinez, Horacio, Terry, Richard E., and Burnett, Richard 2007 The Great Tikal Earthwork Revisited. Journal of Field Archaeology 32:4164.Google Scholar
Weishampel, John F., Chase, Arlen F., Chase, Diane Z., Drake, Jason B., Shrestha, Ramesh L., Clint Slatton, K., Awe, Jaime J., Hightower, Jessica, and Angelo, James 2010 Remote Sensing of Ancient Maya Land Use Features at Caracol, Belize Related to Tropical Rainforest Structure. In Space, Time, Place: Third International Conference on Remote Sensing in Archaeology, edited by Campana, Stefano, Forte, Maurizio, and Liuzza, Claudia, pp. 4552. Archaeopress, Oxford.Google Scholar
Weishampel, John F., Hightower, Jessica N., Chase, Arlen F., and Chase, Diane Z. 2013 Remote Sensing of Below-Canopy Land Use Features from the Maya Polity of Caracol. In Understanding Landscapes: From Discovery through Land Their Spatial Organization, edited by Djindjian, Francois and Robert, Sandrine, pp. 131136. Archaeopress, Oxford.Google Scholar
White, Devin A. 2013 Lidar, Point Clouds, and Their Archaeological Applications. In Mapping Archaeological Landscapes from Space, edited by Comer, D. and Harrower, M., pp. 175186. Springer, New York.Google Scholar
Zetina Gutierrez, Maria G. 2016 Prospeccion Arqueologica Basada en Percepcion Remota en la Poligonal de Proteccion de El Tajin, Veracruz. Las Memorias del VII Congreso Interno de Investigadores del INAH 2013. INAH, Mexico, in press.Google Scholar
Zuber, Maria T., Smith, David E., Solomon, Sean C., Abshire, James B., Afzal, Robert S., Aharonson, Oded, Fishbaugh, Kathryn, Ford, Peter G., Frey, Herbert V., Garvin, James B., Head, James W., Ivanov, Anton B., Johnson, Catherine L., Muhleman, Duane O., Neumann, Gregory A., Pettengill, Gordon H., Phillips, Roger J., Sun, Xiaoli, Zwally, H. Jay, Banerdt, W. Bruce, and Duxbury, Thomas C. 1998 Observations of the North Polar Region of Mars from the Mars Orbiter Laser Altimeter. Science 282:20532060.Google Scholar