No CrossRef data available.
Published online by Cambridge University Press: 06 March 2019
The presented paper describes design and operational characteristics of a new high-temperature camera. The design is developed from the widely used Anton Paar camera, but several of its major disadvantages were eliminated.
The specimen is directly mounted on an electrically-heated metal strip. The most important improvement over the original camera is a provision for the compensation of the thermal expansion of the heating strip. Fig. 1 shows a Ta-heater after using it at temperatures above 2000°C without adequate compensation; the specimen, which is mounted at the center of the strip, is considerably displaced during the measurement and large errors occur in the measurement of the reflecting angles.
The improved overall design allows temperatures (at the heater) above 3000°C to be reached. The highest temperature measured so far at a tungsten strip was 3350°C, which is only 40° below its melting point.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.