Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:25:44.308Z Has data issue: false hasContentIssue false

Crystal structure of paliperidone palmitate (INVEGA SUSTENNA®), C39H57FN4O4

Published online by Cambridge University Press:  29 August 2017

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616 North Central College, 30 N. Brainard St., Naperville, Illinois 60540
Artem O. Dmitrienko
Affiliation:
Institute of Organoelement Compounds, 28 Vavilov St. B-334, Moscow 119991, Russia
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania, 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania, 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of paliperidone palmitate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Paliperidone palmitate crystallizes in space group P21/c (#14) with a = 34.415 40(35), b = 10.093 49(7), c = 10.904 92(9) Å, β = 94.3917(9)°, V = 3776.94(6) Å3, and Z = 4. The conformation of the paliperidone fragment differs from that of the parent compound. The palmitate chain exhibits a slight twist close to the ester group. Several C–H⋅⋅⋅O hydrogen bonds contribute to the crystal packing, which is dominated by van der Waals interactions. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1614.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2014). Materials Studio 8.0 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: A program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.Google Scholar
ICDD (2016). PDF-4+ 2015 (Database), International Centre for Diffraction Data, edited by Dr. Soorya Kabekkodu, Newtown Square, PA, USA.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Kaduk, J. A., Zhong, K., Gindhart, A. M., and Blanton, T. N. (2016). “Crystal structure of paliperidone, C23H27FN4O3 ”, Powder Diffr. 31(2), 135141; CSD Refcode YAGRIJ01.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-784).Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.CrossRefGoogle ScholarPubMed
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
McKinnon, J. J., Spackman, M. A., and Mitchell, A. S. (2004). “Novel tools for visualizing and exploring intermolecular interactions in molecular crystals,” Acta Cryst. Sect. B 60, 627668.Google Scholar
MDI (2014). Jade 9.5 (Materials Data. Inc., Livermore, CA).Google Scholar
Moreno-Calvo, E., Gbabode, G., Cordobilla, R., Calvet, T., Cuevas Diarte, M. À., Negrier, P., and Mondieig, D. (2009). Chem. – Eur. J., 15(47), 1314113149.Google Scholar
Nada, R., Catlow, C. R. A., Pisani, C., and Orlando, R. (1993). “An ab-initio Hartree-Fock perturbed-cluster study of neutral defects in LiF,” Model. Simul. Mater. Sci. Eng. 1, 165187.Google Scholar
Nasrullah, M., Piranian, M., McCarthy, G., and Kaduk, J. A. (2012). Powder Diffraction File entry 00-062-1300, and unpublished observations.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: An open chemical toolbox,” J. Chem. Informatics, 3, 33. doi: 10.1186/1758-2946-3-33.Google Scholar
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11, 1932.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci., Cryst. Eng. Mater., 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2013). Spartan ‘14 version 1.1.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Wavefunction, Inc. (2017). Spartan ‘16 version 2.0.3, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, M. J., Turner, M. J., Jayatilaka, D., and Spackman, M. A. (2012). Crystal Explorer version 3.1 (University of Western Australia).Google Scholar
Supplementary material: File

Kaduk et al supplementary material

Kaduk et al supplementary material 1

Download Kaduk et al supplementary material(File)
File 2.7 MB
Supplementary material: File

Kaduk et al supplementary material

Kaduk et al supplementary material 2

Download Kaduk et al supplementary material(File)
File 11.2 KB