Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T00:24:47.316Z Has data issue: false hasContentIssue false

Modeling and control schedule design of a two-dimensional thrust-vectoring nozzle and aeroengine

Published online by Cambridge University Press:  11 December 2020

Y. Liu
Affiliation:
School of Energy and Power Engineering, Beihang University, Beijing, China
M. Chen*
Affiliation:
School of Energy and Power Engineering, Beihang University, Beijing, China
H. Tang
Affiliation:
School of Energy and Power Engineering, Beihang University, Beijing, China

Abstract

For advanced operational aircraft, the two-dimensional (2-D) thrust-vectoring (TV) nozzle effectively improves the flight mobility and post-stall manoevrability. However, its flow capacity decreases when deflecting and cooling air is injected, which impacts the engine’s operating state, including decreasing the fan surge margin and increasing the turbine inlet temperature. Therefore, in order to improve engine performance in the whole flight envelope, this paper studies the matching mechanism of the engine and the cooled 2-D TV nozzle, performance characterisation and control schedule of the nozzle, and an integrated aeroengine/nozzle modeling method is put forward. Based on these, an engine performance simulation model is modified to include a cooled 2-D TV nozzle. The testing results show that applying the nozzle control schedules recommended in this paper avoids the performance degradation when the nozzle deflects. This work advances the field of engine/nozzle integrated modeling, and helps to instruct the simulation and experimentation to better fit the needs of engine modeling and engineering applications.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wilson, E.A., Adler, D. and Bar-Yoseph, P.Z. Geometric evaluation of axisymmetric thrust-vectoring nozzles for aerodynamic performance predictions, J. Propuls. Power, 2002, 18, (3), pp 712716. DOI: 10.2514/2.5988 Google Scholar
Benjamin, G-O. Fundamental concepts of vectored propulsion, J. Propuls. Power, 1990, 6, (6), pp 747757. DOI: 10.2514/3.23281 Google Scholar
Benjamin, G-O. Review of the debate and the development of thrust vectoring technology, J. Therm. Sci., 1998, 7, (1), pp 16. DOI: 10.1007/s11630-998-0018-9 Google Scholar
Benjamin, G-O., Sherbaum, V. and Lichtsinder, M. Fundamentals of catastrophic failure prevention by thrust vectoring, J. Aircr., 1995, 32, (3), pp 577582. DOI: 10.2514/3.46758 Google Scholar
Joslin, R.D. and Miller, D. Fundamentals and Applications of Modern Flow Control, Progress in Astronautics and Aeronautics. AIAA, Reston, USA, Chap 12, 2009.CrossRefGoogle Scholar
Berrier, B.L. and Manson, M.L. Static Investigation of Post-Exit Vanes for Multiaxis Thrust Vectoring, AIAA Paper, 87–1834, 1987. DOI: 10.2514/6.1987-1834 CrossRefGoogle Scholar
Asbury, S.C. and Capone, F.J. High-alpha vectoring characteristics of the F-18/HARV, J. Propuls. Power, 1994, 10, (1), pp 116121. DOI: 10.2514/3.23719 CrossRefGoogle Scholar
Orbekk, E. Novel TV System Utilizing Guide Vanes with Jet Flap’s into a High Efficiency Compact Nozzle, AIAA Paper 2005–4499, 2005. DOI: 10.2514/6.2005-4499 CrossRefGoogle Scholar
Syed, S.A., Erhart, J.J. and King, E.W. Application of computational fluid dynamics to pitch/yaw thrust vectoring spherical convergent flap nozzles. J. Propuls. Power, 1992, 8, (4), pp 799805. DOI: 10.2514/3.23552 CrossRefGoogle Scholar
Chu, C-W., Der, J. and Wun, W. Simple two-dimensional-nozzle plume model for infrared analysis, J. Aircr., 1981, 18, (12), pp 10381043. DOI: 10.2514/3.57597 CrossRefGoogle Scholar
Cler, D.L., Mason, M.L. and Guthrie, A.R. Experimental Investigation of Spherical-Convergent-Flap Thrust-Vectoring Two-Dimensional Plug Nozzles, AIAA Paper 93–2431, 1993. DOI: 10.2514/6.1993-2431 CrossRefGoogle Scholar
Capone, F., Smereczniak, P., Spetnagel, D. and Thayer, E. Comparative Investigation of Multiplane Thrust Vectoring Nozzles, AIAA Paper 92–3263, 1992. DOI: 10.2514/6.1992-3263 CrossRefGoogle Scholar
Mace, J., Smereczniak, P., Krekeler, G., Bowers, D., Maclean, M. and Thayer, E. Advanced Thrust Vectoring Nozzles for Supercruise Fighter Aircraft, AIAA Paper 89–2816, 1989. DOI: 10.2514/6.1989-2816 CrossRefGoogle Scholar
Parviz, B. and Mcguirk, J.J. Underexpanded jet development from a rectangular nozzle with aft-deck, AIAA J., 2015, 53, (5), pp 12871298. DOI: 10.2514/1.J053376 Google Scholar
Mo, J., Xu, J., Gu, R. and Fan, Z. Design of an asymmetric scramjet nozzle with circular to rectangular shape transition, J. Propuls. Power, 2014, 30, (3), pp 812819. DOI: 10.2514/1.B34949 CrossRefGoogle Scholar
Park, J. and Sohn, C.H. Characteristics of flow and thrust variations in a jet engine with a variable area nozzle, J. Mech. Sci. Technol., 2015, 29, (11), pp 50015010. DOI: 10.1007/s12206-015-1048-3 CrossRefGoogle Scholar
Gamble, E., Terrell, D. and Defrancesco, R. Nozzle Selection and Design Criteria, AIAA Paper 2004–3923, 2004. DOI: 10.2514/6.2004-3923 CrossRefGoogle Scholar
Hiley, P.E., Wallacet, H.W. and Booz, D.E. Nonaxisymmetric nozzles installed in advanced fighter aircraft, J. Aircr., 1976, 13, (12), pp 10001006. DOI: 10.2514/3.58740 CrossRefGoogle Scholar
Chandra Sekar, T., Kushari, A., Mody, B. and Uthup, B. Fluidic thrust vectoring using transverse jet injection in a converging nozzle with aft-deck, Exp. Therm. Fluid Sci., 2017, 86, pp 189203. DOI: 10.1016/j.expthermflusci.2017.04.017 CrossRefGoogle Scholar
Sellam, M., Zmijanovic, V., Leger, L. and Chpoun, A. Assessment of gas thermodynamic characteristics on fluidic thrust vectoring performance: analytical, experimental and numerical study, Int. J. Heat Fluid Flow, 2015, 53, pp 156166. DOI: 10.1016/j.ijheatfluidflow.2015.03.005 CrossRefGoogle Scholar
Gu, R. and Xu, J. Effects of cavity on the performance of dual throat nozzle during the thrust-vectoring starting transient process, J. Eng. Gas Turb. Power, 2013, 136, (1), pp 014502. DOI: 10.1115/1.4025243 CrossRefGoogle ScholarPubMed
Deere, K.A., Berrier, B.L., Flamm, J.D. and Johnson, S.K. Computational Study of Fluid Thrust Vectoring Using Separation Control in a Nozzle, AIAA Paper 2003–3803, 2003. DOI: 10.2514/6.2003-3803 CrossRefGoogle Scholar
Hawkes, T.M. and Franke, M.E. Design Variables for Two-Dimensional Confined Jet Thrust Vector Control Nozzles, AIAA Paper 95–0646, 1995. DOI: 10.2514/6.1995-646 CrossRefGoogle Scholar
Caton, J. and Franke, M. Two-Dimensional Thrust Vector Control Nozzle, AIAA Paper 91-2101, 1991. DOI: 10.2514/6.1991-2101 CrossRefGoogle Scholar
Talda, T. and Franke, M. Two-Dimensional Confined Jet Thrust Vector Control, AIAA Paper 89-2813, 1989. DOI: 10.2514/6.1989-2813 CrossRefGoogle Scholar
Li, L., Hirota, M., Ouchi, K. and Saito, T. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment, Shock Waves, 2016, 27, (1), pp 19. DOI: 10.1007/s00193-016-0637-0 Google Scholar
Li, L., Wang, D. and Saito, T. Effect of control parameters of secondary jet on fluidic thrust vectoring, Adv. Mater. Res., 2014, 998–999, pp 613616. DOI: 10.4028/www.scientific.net/amr.998-999.613 Google Scholar
Deng, R., Kong, F. and Kim, H.D. Numerical simulation of fluidic thrust vectoring in an axisymmetric supersonic nozzle, J. Mech. Sci. Technol., 2014, 28, (12), pp 49794987. DOI: 10.1007/s12206-014-1119-x CrossRefGoogle Scholar
Deng, R., Jin, Y. and Setoguchi, T. CFD Study of Thrust Vectoring Control Using a By-Pass Gas Injection, IET Paper 978-1-84919-907-0, 2015. DOI: 10.1049/cp.2014.1177 CrossRefGoogle Scholar
Asbury, S.C., Gunther, C.L. and Hunter, C.A. A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles, AIAA Paper 96-2541, 1996. DOI: 10.2514/6.1996-2541 CrossRefGoogle Scholar
Williams, R.G. and Vittal, B.R. Fluidic Thrust Vectoring and Throat Control Exhaust Nozzle, AIAA Paper 2002-4060, 2002. DOI: 10.2514/6.2002-4060 CrossRefGoogle Scholar
Heo, J-Y. and Sung, H-G. Fluidic thrust vector control of supersonic jet using coflow injection, J. Propuls. Power, 2012, 28, (4), pp 858861. DOI: 10.2514/1.B34266 Google Scholar
Banazadeh, A., Saghafi, F., Ghoreyshi, M. and Pilidis, P. Experimental and computational investigation into the use of co-flow fluidic thrust vectoring on a small gas turbine, Aeronaut. J., 2008, 112, (1127), pp 1725. DOI: 10.1017/s0001924000001950 CrossRefGoogle Scholar
Adavbiele, A.S. and Salami, L.A. A computational and analytical study into the use of contour-flow fluidic thrust vectoring nozzle for small gas turbine engines, Adv. Mater. Res., 2007, 18–19, pp 407413. DOI: 10.4028/www.scientific.net/AMR.18-19.407 CrossRefGoogle Scholar
Strykowski, P.J. and Krothapalli, A. An Experimental Investigation of Active Control of Thrust Vectoring Nozzle Flow Fields, Technical Report, The University of Minnesota, 1993.Google Scholar
Gu, R., Xu, J. and Guo, S. Experimental and numerical investigations of a bypass dual throat nozzle, J. Eng. Gas Turb. Power, 2014, 136, (8), pp 084501. DOI: 10.1115/1.4026943 CrossRefGoogle Scholar
Gu, R. and Xu, J. Dynamic experimental investigations of a bypass dual throat nozzle, J. Eng. Gas Turb. Power, 2015, 137, (8), pp 084501. DOI: 10.1115/1.4029391 CrossRefGoogle Scholar
Cornelius, K.C. and Lucius, G.A. Thrust vectoring control from convergent nozzles with translating side wall, J. Propuls. Power, 1995, 11, (3), pp 427432. DOI: 10.2514/3.23861 CrossRefGoogle Scholar
Zivkovic, S., Milinovic, M., Gligorijevic, N. and Pavic, M. Experimental research and numerical simulations of thrust vector control nozzle flow, Aeronaut. J., 2016, 120, (1229), pp 11531174. DOI: 10.1017/aer.2016.48 CrossRefGoogle Scholar
Raman, G., Packiarajan, S., Papadopoulos, G., Weissman, C. and Raghu, S. Jet thrust vectoring using a miniature fluidic oscillator, Aeronaut. J., 2005, 109, (1093), pp 129138. DOI: 10.1017/s0001924000000634 CrossRefGoogle Scholar
Kashimura, H., Masuda, Y., Miyazato, Y. and Matsuo, K. Numerical analysis of turbulent sonic jets from two-dimensional convergent nozzles, J. Therm. Sci., 2011, 20, (2), pp 133138. DOI: 10.1007/s11630-011-0447-8 CrossRefGoogle Scholar
Xiao, Q., Tsai, H-M. and Liu, F. Computation of turbulent separated nozzle flow by a lag model, J. Propuls. Power, 2005, 21, (2), pp 368371. DOI: 10.2514/1.11446 CrossRefGoogle Scholar
Yang, Y., Qitai, E., Wang, Q. and Zhu, X. Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project, International Forum on Energy, Environment Science and Materials, S. B. Choi, Curran Associates Inc., New York, 40, pp 1207–1212, 2015.Google Scholar
Hunter, C.A. An Approximate Theoretical Method for Modeling the Static Thrust Performance of non-axisymmetric Two-Dimensional Convergent-Divergent Nozzles, NASA Report No CR-195050, 1995.Google Scholar
Wilson, E.A., Adler, D., Bal-Or, B.Z., Sherbaum, V. and Lichtsinder, M. Optimizing subcritical-flow thrust-vectoring of converging-diverging nozzles, J. Propuls. Power, 2000, 16, (2), pp 202206. DOI: 10.2514/2.5584 CrossRefGoogle Scholar
Hui-Min, M., Si-Qi, F. and Han-Ping, C. A real-time performance model for thrust vectoring nozzle and application in aero-engine simulation, Int. J. Turbo Jet Eng., 2005, 22, (21), pp 2129. DOI: 10.1515/TJJ.2005.22.1.21 Google Scholar
Matesanz, A., Velazquez, A. and Rodriguez, M. Performance Analysis of an Axisymmetric Thrust-Vectoring Nozzle by Using the FUNSIF3D Code, AIAA Paper 95-2743, 1995. DOI: 10.2514/6.1995-2743 CrossRefGoogle Scholar
Xiao, Q., Tsai, H.M., Papamoschou, D. and Johnson, A. Experimental and numerical study of jet mixing from a shock-containing nozzle, J. Propuls. Power, 2009, 25, (3), pp 688696. DOI: 10.2514/1.37022 CrossRefGoogle Scholar
Hamed, A. and Vogiatzis, C. Overexpanded two-dimensional convergent-divergent nozzle performance, effects of three-dimensional flow interactions, J. Propuls. Power, 1998, 14, (2), pp 234240. DOI: 10.2514/2.5272 Google Scholar
Munday, D., Gutmark, E., Liu, J. and Kailasanath, K. Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles, Phys. Fluids, 2011, 23, (11), pp 116102. DOI: 10.1063/1.3657824 CrossRefGoogle Scholar
Johnson, A.D. and Papamoschou, D. Instability of shock-induced nozzle flow separation, Phys. Fluids, 2010, 22, (1), pp 016102. DOI: 10.1063/1.3278523 CrossRefGoogle Scholar
Matesanz, A., Velazquez, A. and Rodriguez, M. Aerodynamics performance prediction of thrust-vectoring nozzles, J. Propuls. Power, 1998, 14, (2), pp 241246. DOI: 10.2514/2.5273 CrossRefGoogle Scholar
Gal-Or, B.Z. Maximizing thrust-vectoring control power and agility metrics, J. Aircr., 1992, 29, (4), pp 647651. DOI: 10.2514/3.46214 CrossRefGoogle Scholar
Carlson, J.R., Pao, S.P. and Abdol-Hamid, K.S. Computational analysis of vented supersonic exhaust nozzle using a multiblock/multizone strategy, J. Propuls. Power, 1993, 9, (6), pp 834839. DOI: 10.2514/3.23697 CrossRefGoogle Scholar
Zhang, D., Feng, Y., Zhang, S., Qin, J., Chen, K., Bao, W. and Yu, D. Quasi-one-dimensional model of scramjet combustor coupled with regenerative cooling, J. Propuls. Power, 2016, 32, (3), pp 687697. DOI: 10.2514/1.B35887 CrossRefGoogle Scholar
Lu, F., Qian, J., Huang, J. and Qiu, X. In-flight adaptive modeling using polynomial LPV approach for turbofan engine dynamic behavior, Aerosp. Sci. Technol., 2017, 64, pp 223236. DOI: 10.1016/j.ast.2017.02.003 Google Scholar
Yu, B., Shen, E., Huang, Y. and Lu, F. Research on self-learning control method for aircraft engine above idle state, Adv. Mech. Eng., 2016, 8, (6), pp 110. DOI: 10.1177/1687814016653888 Google Scholar
Lu, F., Zheng, W., Huang, J. and Feng, M. Life cycle performance estimation and in-flight health monitoring for gas turbine engine, J. Dyn. Syst. Meas. Control, 2016, 138, (9), pp 091009. DOI: 10.1115/1.4033556 CrossRefGoogle Scholar
Clarke, D.R. and Levi, C.G. Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res., 2003, 33, (1), pp 383417. DOI: 10.1146/annurev.matsci.33.011403.113718 CrossRefGoogle Scholar
Padture, N.P., Gell, M. and Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications, Science, 2002, 296, (5566), pp 280284. DOI: 10.1126/science.1068609 Google ScholarPubMed
Qin, J., Zhang, S., Bao, W., Zhou, W. and Yu, D. Thermal management method of fuel in advanced aeroengines, Energy, 2013, 49, pp 459468. DOI: 10.1016/j.energy.2012.10.050 Google Scholar
Duan, Y., Zhou, W., Qin, J., Bao, W. and Yu, D. Structural design for adaptive heat transfer enhancement, J. Enhanc. Heat Trans., 2011, 18, (1), pp 7180. DOI: 10.1615/JEnhHeatTransf.v18.i1.60 Google Scholar
Kim, S., Kim, J.S., Choi, J., Park, J. and Kwon, S.D. Numetrically analyzed supersonic flow structure behind the exit of a two-dimensional micro nozzle, J. Mech. Sci. Technol., 2008, 22, (6), pp 11741180. DOI: 10.1007/s12206-008-0405-x Google Scholar
Sanghi, V., Lakshmanan, B.K. and Rajasekaran, R. Aerothermal model for real-time digital simulation of a mixed-flow turbofan engine, J. Propuls. Power, 2001, 17, (3), pp 629635. DOI: 10.2514/2.5789 Google Scholar
Hailong, T. and Jin, Z. A Study of Object-Oriented Approach for Aeroengine Performance Simulation, Journal of Aerospace Power (in Chinese), 1999, 14, (4), pp 421424. DOI: 10.13224/j.cnki.jasp.1999.04.019 Google Scholar