Published online by Cambridge University Press: 07 June 2016
A description is given of a supersonic pressure-tube wind tunnel which has been constructed at A.R.D.E. This is a blow-down tunnel which uses as a reservoir a long tube filled with gas under pressure. A quasi-steady supersonic flow is achieved by expanding in a convergent-divergent nozzle the subsonic flow behind rarefaction waves which propagate down the tube when a diaphragm at the nozzle exit is burst. The theory of the operation of the tunnel is given and calculations are made of the boundary-layer growth along the tube. Pressure-time records were obtained in the tube, and a high speed camera was used to obtain pictures of the flow round a model. Measurements also included a pitot-tube traverse of the nozzle exit, and the Mach number distribution was determined from the ratio of the pitot to the stagnation pressure. Tests showed that, as predicted, a constant stagnation pressure was obtained ahead of the nozzle, and it is considered that a tunnel of this type would be a cheap and simple way of obtaining an intermittent tunnel with adequate running time for many types of test, and capable of operating at a Reynolds number of more than 107 per inch at a Mach number of about 3·5.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.