No CrossRef data available.
Article contents
Performing calculus operations on poorly understood engineering functions using neural networks
Published online by Cambridge University Press: 27 February 2009
Abstract
The paper describes a novel means of performing calculus operations on poorly understood engineering functions using networks of radial Gaussian neurons. The network architecture and training algorithm used for this purpose is described briefly. Once trained, a network can be converted into a form that provides the differential or integral of the learned function, by a simple substitution of the type of activation function used at the hidden neurons. A range of substitute activation functions, for conversion to first- and second-order partial differential and integral forms of the network, are derived. Following this, the technique is tested on a selection of calculus operations for two example civil engineering problems: assessing motion in tall structures; and modeling moisture penetration in porous materials. The converted networks produced in these experiments provide accurate models of the actual differentials and integrals of the function the original networks had been taught. A method of improving the accuracy of results by training the original network beyond the region in which the converted networks operate, is described. The paper concludes by identifying some areas for further development of the technique.
- Type
- Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1995