Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T04:08:30.089Z Has data issue: false hasContentIssue false

Taphonomic Analysis of the Mammalian Fauna from Sandia Cave, New Mexico, and the “Sandia Man” Controversy

Published online by Cambridge University Press:  20 January 2017

Jessica C. Thompson
Affiliation:
School of Human Evolution and Social Change, PO Box 872402, Arizona State University, Tempe, AZ 85287-2402 (jcthoml@asu.edu)
Nawa Sugiyama
Affiliation:
Harvard University, Department of Anthropology, Peabody Museum, 11 Divinity Avenue Cambridge, MA 02138 (nsugiyam@fas.harvard.edu)
Gary S. Morgan
Affiliation:
New Mexico Museum of Natural History, 1801 Mountain Rd., NW, Albuquerque, NM 87104 (gary.morganl@state.nm.us)

Abstract

Sandia Cave in New Mexico was excavated in the late 1930s by Frank Hibben, who described a unique type of chipped stone artifact-the “Sandia point”-in association with a faunal assemblage that included extinct Pleistocene species. The site was interpreted as a late Pleistocene Paleoindian hunting station, making it the earliest human occupation known in America at the time. Despite the pivotal role the faunal assemblage has played in interpretations of the site, there was never a confirmed behavioral association between the artifacts and the fossils. A subsequent series of controversies about the age of the site and the integrity of the stratigraphy has since pushed Sandia Cave into obscurity. Results from a recent taphonomic study of the large and small mammal assemblages from the original excavations are reported here. These show that the majority of the fauna were accumulated by nonhuman agents (carnivores, raptors, and rodents), but that a small proportion of large mammal fragments retain human modification. The three major points of controversy are discussed in light of these and other findings, and it is shown that Sandia Cave remains an important datapoint in archaeological, paleontological, and paleoecological studies of the region.

Résumé

Résumé

Sandia Cave en Nuevo Mexico fue excavado a fines de los años 1930 por Frank Hibben, quién describió un tipo de artefacto de piedra tallada, el llamado “Punto Sandia” en asociación con un ensemblaje de restos faunísticos que incluía especies Pleistocénicos extintos. El sitio fue interpretado como una estación de cacería Paleoindia del período Pleistocénico tardío, siendo la más temprana ocupación humana en las Américas entonces conocida. A pesar del papel vital que ha jugado el ensamblaje de restos faunísticos, nunca se ha confirmado una asociación entre los artefactos y los fósiles en términos de la conducta humana antigua. Una serie de controvérsias en torno a la antigüedad del sitio y la integridad de su estratigrafía han reducido al sitio Sandia Cave a la obscuridad. Aquí se publican los resultados de un reciente estudio tafonómico del ensamblaje de restos óseos de mamíferos grandes y pequeños, proveniente de las excavaciones originales. Estos demuestran que la mayoría de los restos fueron acumulados por agentes extrahumanos (animales carnívoros, aves rapáces y roedores). Una pequeña proporción retienen evidencias de modificación humana. Los tres puntos de controvérsia antes señalados se discuten a luz de estos y otros descubrimientos, y se demuestra que Sandia Cave retiene su importancia como punto dato en estudios arqueológicos, paleontológicos y paleoecológicos de la región.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Andrews, Peter 1990 Owls, Caves and Fossils: Predation, Preservation and Accumulation of Small Mammal Bones in Caves. University of Chicago Press, Chicago.Google Scholar
Bartsiokas, Antonis, and Middleton, Andrew P. 1992 Characterization and Dating of Recent and Fossil Bone by X-Ray Diffraction. Journal of Archaeological Science 19:6372.Google Scholar
Bartram, Laurence E. Jr., and Marean, Curtis W. 1999 Explaining the “Klasies Patter”: Kua Ethnoarchaeology, the Die Kelders Middle Stone Age Archaeofauna, Long Bone Fragmentation, and Carnivore Ravaging. Journal of Archaeological Science 26:929.Google Scholar
Behrensmeyer, A. Kay 1978 Taphonomic and Ecologic Information from Bone Weathering. Paleobiology 4:150162.CrossRefGoogle Scholar
Berger, Lee R., and Clarke, Ron J. 1995 Eagle Involvement in Accumulation of the Taung Child Fauna. Journal of Human Evolution 29:275299.Google Scholar
Bliss, Wesley L. 1940a Correspondence: Sandia Cave. American Antiquity 6:7778.Google Scholar
Bliss, Wesley L. 1940b A Chronological Problem Presented by Sandia Cave, New Mexico. American Antiquity 5:200201.CrossRefGoogle Scholar
Blumenschine, Robert J. 1988 An Experimental Model of the Timing of Hominid and Carnivore Influence on Archaeological Bone Assemblages. Journal of Archaeological Science 15:483502.CrossRefGoogle Scholar
Blumenschine, Robert J. 1995 Percussion Marks, Tooth Marks, and Experimental Determinations of the Timing of Hominid and Carnivore Access to Long Bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution 29:2151.Google Scholar
Blumenschine, Robert J., Marean, Curtis W., and Capaldo, Salvatore D. 1996 Blind Tests on Inter-Analyst Correspondence and Accuracy in the Identification of Cut Marks, Percussion Marks, and Carnivore Tooth Marks on Bone Surfaces. Journal of Archaeological Science 23:493507.Google Scholar
Brand, Donald D. 1940 Correspondence: Regarding Sandia Cave. American Antiquity 5:339.Google Scholar
Brasso, Rebecka L., and Emslie, Steven D. 2006 Two New Late Pleistocene Avifaunas from New Mexico. Condor 108:721730.Google Scholar
Bunn, Henry T. 1983 Comparative Analysis of Modern Bone Assemblages from a San Hunter-Gatherer Camp in the Kalahari Desert, Botswana, and from a Spotted Hyena Den near Nairobi, Kenya. In Animals and Archaeology: Hunters and Their Prey, edited by Juliet Clutton-Brock and Caroline Grigson, pp. 143148. BAR International Series 163. British Archaeological Reports, Oxford.Google Scholar
Byers, Douglas S. 1942 Concerning Sandia Cave. American Antiquity 7:408409.Google Scholar
Crane, Horace R. 1955 Antiquity of the Sandia Culture: Carbon-14 measurements. Science 122:689690.Google Scholar
Crane, Horace R. 1956 University of Michigan Radiocarbon Dates I. Science 124:664672.CrossRefGoogle ScholarPubMed
Degenhardt, William G., Painter, Charles W., and Price, Andrew H. 1996 Amphibians and Reptiles of New Mexico. University of New Mexico Press, Albuquerque.Google Scholar
Dodson, Peter, and Wexlar, Diane 1979 Taphonomic Investigations of Owl Pellets. Paleobiology 3:275284.Google Scholar
Gross, Hugo 1951 Mastodons, Mammoths, and Man in America. Bulletin of the Texas Archaeological and Paleontological Society 22:114.Google Scholar
Gross, Hugo 1957 Age of the Sandia Culture. Science 126:305306.CrossRefGoogle ScholarPubMed
Haynes, C. Vance Jr., and Agogino, George A. 1986 Geochronology of Sandia Cave. Smithsonian Contributions to Anthropology Vol. 32, Smithsonian Institution Press, Washington, D.C.Google Scholar
Hibbard, Claude W. 1949 Techniques of Collecting Microvertebrate Fossils. Contributions from the Museum of Paleontology, University of Michigan 8:719.Google Scholar
Hibben, Frank C. 1937 Association of Man with Pleistocene Mammals in the Sandia Mountains, New Mexico. American Antiquity 2:260263.Google Scholar
Hibben, Frank C. 1941a Evidences of Early Occupation in Sandia Cave, New Mexico, and other Sites in the Sandia-Manzano Region. Smithsonian Miscellaneous Collections Vol. 99, Smithsonian Institution, Washington, D.C.Google Scholar
Hibben, Frank C. 1941b Correspondence: Sandia Cave. American Antiquity 6:266266.Google Scholar
Hibben, Frank C. 1946 The First Thirty-Eight Sandia Points. American Antiquity 11:251258.Google Scholar
Hibben, Frank C. 1955 Specimens from Sandia Cave and their Possible Significance. Science 122:688689.CrossRefGoogle ScholarPubMed
Hibben, Frank C. 1957 Comments Following the Johnson 1957 Article. Science 125:235235.CrossRefGoogle Scholar
Hockett, Bryan S. 1991 Toward Distinguishing Human and Raptor Patterning on Leporid Bones. American Antiquity 56:667679.CrossRefGoogle Scholar
Hockett, Bryan S. 1996 Corroded, Thinned and Polished Bones Created by Golden Eagles (Aquila chrysaetus): Taphonomic Implications for Archaeological Interpretations. Journal of Archaeological Science 23:587591.CrossRefGoogle Scholar
Johnson, Frederick 1957 Radiocarbon Dates from Sandia Cave, Correction. Science 125:234235.Google Scholar
Kelley, Vincent C., and Northrop, Stuart A. 1975 Geology of the Sandia Mountains and Vicinity. Memoir 29. New Mexico Bureau of Mines and Mineral Resources.CrossRefGoogle Scholar
Lam, Yin M., Chen, Xingbin, Marean, Curtis W., and Frey, Carol J. 1998 Bone Density and Long Bone Representation in Archaeological Faunas: Comparing Results from CT and Photon Densitometry. Journal of Archaeological Science 25:559570.Google Scholar
Lyman, R. Lee 1984 Bone Density and Differential Survivorship of Fossil Classes. Journal of Anthropological Archaeology 3:259299.Google Scholar
Marean, Curtis W., Abe, Yoshiko, Frey, Carol J., and Randall, Robert C. 2000 Zooarchaeological and Taphonomic Analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age Larger Mammal Fauna. Journal of Human Evolution 38:197233.Google Scholar
Marean, Curtis W., Dominguez-Rodrigo, Manuel, and Pickering, Travis R. 2004 Skeletal Element Equifinality in Zooarchaeology Begins with Method: The Evolution and Status of the “Shaft Critique”. Journal of Taphonomy 2:6998.Google Scholar
Marean, Curtis W., and Frey, Carol J. 1997 Animal Bones from Caves to Cities: Reverse Utility Curves as Methodological Artifacts. American Antiquity 62:698711.Google Scholar
Marean, Curtis W., and Kim, Soo Yeun 1998 Mousterian Large-Mammal Remains from Kobeh Cave: Behavioral Implications for Neanderthals and Early Modern Humans. Current Anthropology 39:S79S113.Google Scholar
Marean, Curtis W., Spencer, Lilian M., Blumenschine, Robert J., and Capaldo, Salvatore D. 1992 Captive Hyena Bone Choice and Destruction, the Schlepp Effect, and Olduvai Archaeofaunas. Journal of Archaeological Science 19:101121.Google Scholar
Preston, Douglas 1995 The Mystery of Sandia Cave. New Yorker June:6683.Google Scholar
Shaffer, Brian S., and Sanchez, Julia L. J. 1994 Comparison of 1/8”- and 1/4”- Mesh Recovery of Controlled Samples of Small-to-Medium-Sized Mammals. American Antiquity 59(3):525530.CrossRefGoogle Scholar
Stevens, Dominique E., and Agogino, George A. 1975 Sandia Cave: A Study in Controversy. Contributions in Anthropology Vol. 7, Paleo-Indian Institute, Eastern New Mexico University.Google Scholar
Thompson, Jessica C. 2005 The Impact of Post-Depositional Processes on Bone Surface Modification Frequencies: A Corrective Strategy and its Application to the Loiyangalani Site, Serengeti Plain, Tanzania. Journal of Taphonomy 3:5780.Google Scholar
Thompson, Jessica C., and Morgan, Gary S. 2001 Late-Pleistocene Mammalian Fauna and Environments of the Sandia Mountains, New Mexico. Current Research in the Pleistocene 18:113115.Google Scholar
Villa, Paola, and Mahieu, Eric 1991 Breakage Patterns of Human Long Bones. Journal of Human Evolution 21:2748.CrossRefGoogle Scholar