Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T07:22:46.004Z Has data issue: false hasContentIssue false

Biomarkers of sepsis in pigs, horses and cattle: from acute phase proteins to procalcitonin

Published online by Cambridge University Press:  07 July 2022

M. J. López-Martínez
Affiliation:
Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum,’ University of Murcia, Espinardo, Murcia 30100, Spain
L. Franco-Martínez*
Affiliation:
Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum,’ University of Murcia, Espinardo, Murcia 30100, Spain
S. Martínez-Subiela
Affiliation:
Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum,’ University of Murcia, Espinardo, Murcia 30100, Spain
J. J. Cerón
Affiliation:
Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum,’ University of Murcia, Espinardo, Murcia 30100, Spain
*
Author for correspondence: L. Franco-Martínez, E-mail: lorena.franco2@um.es

Abstract

Sepsis is a complex clinical syndrome triggered by an inflammatory host response to an infection. It is usually complicated to detect and diagnose, and has severe consequences in human and veterinary health, especially when treatment is not started early. Therefore, efforts to detect sepsis accurately are needed. In addition, its proper diagnosis could reduce the misuse of antibiotics, which is essential fighting against antimicrobial resistance. This case is a particular issue in farm animals, as antibiotics have been traditionally given massively, but now they are becoming increasingly restricted. When sepsis is suspected in animals, the most frequently used biomarkers are acute phase proteins such as C-reactive protein, serum amyloid A and haptoglobin, but their concentrations can increase in other inflammatory conditions. In human patients, the most promising biomarkers to detect sepsis are currently procalcitonin and presepsin, and there is a wide range of other biomarkers under study. However, there is little information on the application of these biomarkers in veterinary species. This review aims to describe the general concepts of sepsis and the current knowledge about the biomarkers of sepsis in pigs, horses, and cattle and to discuss possible advances in the field.

Type
Review Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, N, Fujishima, S, Endo, S, Sekine, I, Kogawa, K, Yamamoto, Y, Kushimoto, S, Yukioka, H, Kato, N, Totsuka, K, Kikuchi, K, Ikeda, T, Ikeda, K, Harada, K and Satomura, S (2005) Multicenter prospective study of procalcitonin as an indicator of sepsis. Journal of Infection and Chemotherapy 11, 152159.CrossRefGoogle ScholarPubMed
Aitken, MR, Stefanovski, D and Southwood, LL (2019) Serum amyloid A concentration in postoperative colic horses and its association with postoperative complications. Veterinary Surgery 48, 143151.CrossRefGoogle ScholarPubMed
Akgül, Y, Aya, AK, Ilmaz, NY and Özkan, C (2019) Evaluation of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNF-α), interleukins (IL-6, IL-8) and C-reactive protein (CRP) levels in neonatal calves with presumed septicemia. Van Veterinary Journal 30, 167173.CrossRefGoogle Scholar
Alberti, C, Brun-Buisson, C, Goodman, SV, Guidici, D, Granton, J, Moreno, R, Smithies, M, Thomas, O, Artigas, A and Le Gall, JR (2003) Influence of systemic inflammatory response syndrome and sepsis on outcome of critically III infected patients. American Journal of Respiratory and Critical Care Medicine 168, 7784.CrossRefGoogle Scholar
Alsemgeest, SP, Kalsbeek, HC, Wensing, T, Koeman, JP, van Ederen, AM and Gruys, E (1994) Concentrations of serum amyloid-A (SAA) and haptoglobin (HP) as parameters of inflammatory diseases in cattle. The Veterinary Quarterly 16, 2123.CrossRefGoogle ScholarPubMed
Amin, P and Amin, V (2015) Viral sepsis. In: Vincent, JL (eds) Annual Update in Intensive Care and Emergency Medicine, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_4CrossRefGoogle Scholar
Angus, DC and van der Poll, T (2013) Severe sepsis and septic shock. New England Journal of Medicine 369, 840851.CrossRefGoogle ScholarPubMed
Ansar, W and Ghosh, S (2013) C-reactive protein and the biology of disease. Immunologic Research 56, 131142.CrossRefGoogle ScholarPubMed
Appelt, MA, da Silva, AS, Cazarotto, CJ, Machado, G, Rodrigues, RS, Norbury, LJ, Baldissera, MD, Alba, DF, Gris, A and Mendes, RE (2019) Cholinesterase as an inflammatory marker of subclinical infection of dairy cows infected by Neospora caninum and risk factors for disease. Comparative Immunology, Microbiology and Infectious Diseases 66, 101330.CrossRefGoogle ScholarPubMed
Armengou, L, Monreal, L, Tarancón, I, Navarro, M, Ríos, J and Segura, D (2008) Plasma d-dimer concentration in sick newborn foals. Journal of Veterinary Internal Medicine 22, 411417.CrossRefGoogle ScholarPubMed
Arnon, S and Litmanovitz, I (2008) Diagnostic tests in neonatal sepsis. Current Opinion in Infectious Diseases 21, 223227.CrossRefGoogle ScholarPubMed
Assicot, M, Gendrel, D, Carsin, H, Raymond, J, Guilbaud, J and Bohuon, C (1993) High serum procalcitonin concentrations in patients with sepsis and infection. Lancet (London, England) 341, 515518.CrossRefGoogle ScholarPubMed
Badolato, R, Wang, JM, Murphy, WJ, Lloyd, AR, Michiel, DF, Bausserman, LL, Kelvin, DJ and Oppenheim, JJ (1994) Serum amyloid a is a chemoattractant: induction migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. Journal of Experimental Medicine 180, 203209.CrossRefGoogle ScholarPubMed
Ballou, SP and Lozanski, G (1992) Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4, 361368.CrossRefGoogle ScholarPubMed
Ballou, MA, Cobb, CJ, Hulbert, LE and Carroll, JA (2011) Effects of intravenous Escherichia coli dose on the pathophysiological response of colostrum-fed Jersey calves. Veterinary Immunology and Immunopathology 141, 7683.CrossRefGoogle ScholarPubMed
Bannikov, GA, Mattoon, JS, Abrahamsen, EJ, Premanandan, C, Green-Church, KB, Marsh, AE and Lakritz, J (2007) Biochemical and enzymatic characterization of purified covalent complexes of matrix metalloproteinase-9 and haptoglobin released by bovine granulocytes in vitro. American Journal of Veterinary Research 68, 9951004.CrossRefGoogle ScholarPubMed
Bannikov, GA, Hinds, CA, Rajala-Schultz, PJ, Premanandan, C, Rings, DM and Lakritz, J (2011) Serum haptoglobin-matrix metalloproteinase 9 (Hp-MMP 9) complex as a biomarker of systemic inflammation in cattle. Veterinary Immunology and Immunopathology 139, 4149.CrossRefGoogle ScholarPubMed
Basoglu, A, Sen, I, Sevinc, M and Simsek, A (2004) Serum concentrations of tumor necrosis factor-α in neonatal calves with presumed septicemia. Journal of Veterinary Internal Medicine 18, 238241.Google ScholarPubMed
Baydar, E and Dabak, M (2014) Serum iron as an indicator of acute inflammation in cattle. Journal of Dairy Science 97, 222228.CrossRefGoogle ScholarPubMed
Becker, KL, Nylén, ES, White, JC, Müller, B and Snider, RH (2004) Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. Journal of Clinical Endocrinology and Metabolism 89, 15121525.CrossRefGoogle ScholarPubMed
Becker, KL, Snider, R and Nylen, ES (2010) Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. British Journal of Pharmacology 159, 253264.CrossRefGoogle ScholarPubMed
Becze, Z (2016) The molecular basis of procalcitonin synthesis in different infectious and non-infectious acute conditions. Journal of Human Virology & Retrovirology 3, 36.CrossRefGoogle Scholar
Behnes, M, Bertsch, T, Lepiorz, D, Lang, S, Trinkmann, F, Brueckmann, M, Borggrefe, M and Hoffmann, U (2014) Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Critical Care 18, 113.CrossRefGoogle ScholarPubMed
Blanco, J, Muriel-Bombín, A, Sagredo, V, Taboada, F, Gandía, F, Tamayo, L, Collado, J, García-Labattut, Á, Carriedo, D, Valledor, M, De Frutos, M, López, MJ, Caballero, A, Guerra, J, Álvarez, B, Mayo, A and Villar, J (2008) Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Critical Care 12, 114.CrossRefGoogle ScholarPubMed
Bonelli, F, Meucci, V, Divers, T, Radcliffe, R, Jose-Cunilleras, E, Corazza, M, Guidi, G, Tognetti, R, Castagnetti, C, Intorre, L and Sgorbini, M (2015 a) Evaluation of plasma procalcitonin concentrations in healthy foals and foals affected by septic systemic inflammatory response syndrome. Journal of Equine Veterinary Science 35, 645649.CrossRefGoogle Scholar
Bonelli, F, Meucci, V, Divers, TJ, Jose-Cunilleras, E, Corazza, M, Tognetti, R, Guidi, G, Intorre, L and Sgorbini, M (2015 b) Plasma procalcitonin concentration in healthy horses and horses affected by systemic inflammatory response syndrome. Journal of Veterinary Internal Medicine 29, 16891691.CrossRefGoogle ScholarPubMed
Bonelli, F, Meucci, V, Divers, T, Wagner, B, Intorre, L and Sgorbini, M (2017) Kinetics of plasma procalcitonin, soluble CD14, CCL2 and IL-10 after a sublethal infusion of lipopolysaccharide in horses. Veterinary Immunology and Immunopathology 184, 2935.CrossRefGoogle ScholarPubMed
Bonelli, F, Meucci, V, Divers, TJ, Boccardo, A, Pravettoni, D, Meylan, M, Belloli, AG and Sgorbini, M (2018) Plasma procalcitonin concentration in healthy calves and those with septic systemic inflammatory response syndrome. Veterinary Journal 234, 6165.CrossRefGoogle ScholarPubMed
Borghetti, P, Saleri, R, Mocchegiani, E, Corradi, A and Martelli, P (2009) Infection, immunity and the neuroendocrine response. Veterinary Immunology and Immunopathology 130, 141162.CrossRefGoogle ScholarPubMed
Borish, LC and Steinke, JW (2003) 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology 111, 460475.CrossRefGoogle ScholarPubMed
Bouchon, A, Facchetti, F, Weigand, MA and Colonna, M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 11031107.CrossRefGoogle ScholarPubMed
Brady, N, O'Reilly, EL, McComb, C, Macrae, AI and Eckersall, PD (2019) An immunoturbidimetric assay for bovine haptoglobin. Comparative Clinical Pathology 28, 2127.CrossRefGoogle ScholarPubMed
Brauner, JS, Rohde, LE and Clausell, N (2000) Circulating endothelin-1 and tumor necrosis factor-α: early predictors of mortality in patients with septic shock. Intensive Care Medicine 26, 305313.CrossRefGoogle ScholarPubMed
Breuer, J and Schusser, GF (2012) Establishing a sepsis-score for adult equine patients. Pferdeheilkunde 28, 421428.CrossRefGoogle Scholar
Bullone, M, De Lagarde, M, Vargas, A and Lavoie, JP (2015) Serum surfactant protein D and haptoglobin as potential biomarkers for inflammatory airway disease in horses. Journal of Veterinary Internal Medicine 29, 17071711.CrossRefGoogle ScholarPubMed
Campbell, FM, Waterston, M, Andresen, LO, Sorensen, NS, Heegaard, PMH and Eckersall, PD (2005) The negative acute phase response of serum transthyretin following Streptococcus suis infection in the pig. Veterinary Research 36, 657664.CrossRefGoogle ScholarPubMed
Carrol, ED, Thomson, APJ and Hart, CA (2002) Procalcitonin as a marker of sepsis. International Journal of Antimicrobial Agents 20, 19.CrossRefGoogle Scholar
Castellheim, A, Thorgersen, EB, Hellerud, BC, Pharo, A, Johansen, HT, Brosstad, F, Gaustad, P, Brun, H, Fosse, E, Tønnessen, TI, Nielsen, EW and Mollnes, TE (2008) New biomarkers in an acute model of live Escherichia coli-induced sepsis in pigs. Scandinavian Journal of Immunology 68, 7584.CrossRefGoogle Scholar
Cerón, JJ (2019) Acute phase proteins, saliva and education in laboratory science: an update and some reflections. BMC Veterinary Research 15, 18.CrossRefGoogle ScholarPubMed
Cerón, JJ, Martinez-Subiela, S, Tecles, F and Caldin, M (2014) Acute phase proteins in diagnostics: more than expected. Journal of the Hellenic Veterinary Medical Society 65, 197204.CrossRefGoogle Scholar
Çetinkaya, M, Özkan, H, Köksal, N, Çelebi, S and Hacimustafaoǧlu, M (2009) Comparison of serum amyloid A concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. Journal of Perinatology 29, 225231.CrossRefGoogle ScholarPubMed
Chan, T and Gu, F (2011) Early diagnosis of sepsis using serum biomarkers. Expert Review of Molecular Diagnostics 11, 487496.CrossRefGoogle ScholarPubMed
Chenevier-Gobeaux, C, Trabattoni, E, Roelens, M, Borderie, D and Claessens, YE (2014) Presepsin (sCD14-ST) in emergency department: the need for adapted threshold values? Clinica Chimica Acta 427, 3436.CrossRefGoogle ScholarPubMed
Chenevier-Gobeaux, C, Borderie, D, Weiss, N, Mallet-Coste, T and Claessens, YE (2015) Presepsin (sCD14-ST), an innate immune response marker in sepsis. Clinica Chimica Acta 450, 97103.CrossRefGoogle Scholar
Christ-crain, M, Morgenthaler, NG, Struck, J, Harbarth, S, Bergmann, A and Müller, B (2005) Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: an observational study. Critical care (London, England) 9, 816824.CrossRefGoogle Scholar
Corley, KTT and Furr, MO (2003) Evaluation of a score designed to predict sepsis in foals. Journal of Veterinary Emergency and Critical Care 13, 149155.CrossRefGoogle Scholar
Corley, KTT, Donaldson, LL and Furr, MO (2010) Arterial lactate concentration, hospital survival, sepsis and SIRS in critically ill neonatal foals. Equine Veterinary Journal 37, 5359.CrossRefGoogle Scholar
Coskun, A and Sen, L (2012) Acute phase response and clinical changes in calves with lipopolysaccharide induced endotoxemia.Google Scholar
Cray, C (2012) Progress in Molecular Biology and Translational Science. Acute Phase Proteins in Animals, 1st Edn. Elsevier Inc., vol 105, pp. 113150.Google ScholarPubMed
Crisman, MV, Kent Scarratt, W and Zimmerman, KL (2008) Blood proteins and inflammation in the horse. Veterinary Clinics of North America – Equine Practice 24, 285297.CrossRefGoogle Scholar
Dalanezi, FM, Schmidt, EMS, Joaquim, SF, Guimarães, FF, Guerra, ST, Lopes, BC, Cerri, RLA, Chadwick, C and Langoni, H (2020) Concentrations of acute-phase proteins in milk from cows with clinical mastitis caused by different pathogens. Pathogens 9, 112.CrossRefGoogle ScholarPubMed
Dicks, LMT, Botha, M, Dicks, E and Botes, M (2014) The equine gastro-intestinal tract: an overview of the microbiota, disease and treatment. Livestock Science 160, 6981.Google Scholar
Do Carmo, GM, Da Silva, AS, Klauck, V, Pazinato, R, Moura, AB, Duarte, T, Duarte, MMMF, Bochi, GV, Moresco, RN and Stefani, LM (2015) Immunological response and markers of cell damage in seropositive horses for Toxoplasma gondii. Comparative Immunology, Microbiology and Infectious Diseases 38, 913.CrossRefGoogle ScholarPubMed
Eckersall, PD and Bell, R (2010) Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine. Veterinary Journal 185, 2327.CrossRefGoogle ScholarPubMed
El-Deeb, W, Iacob, O, Fayez, M, Elgioushy, M, Shawaf, T and Ibrahim, A (2018) Acute phase proteins, interleukin-6, tumor necrosis factor, nitric oxide and oxidative stress markers in horses with cutaneous habronemosis under field condition. Veterinary Parasitology 255, 2025.Google ScholarPubMed
El-Deeb, W, Fayez, M, Elsohaby, I, Mkrtchyan, HV and Alhaider, A (2020) Changes in blood biomarkers in Arabian horses with Clostridium difficile-induced enterocolitis. Comparative Immunology, Microbiology and Infectious Diseases 73, 101525.CrossRefGoogle ScholarPubMed
Emami, S, Kalani, M and Mohaddes, GA (2016) Diagnostic role of serum haptoglobin level in early onset neonatal sepsis. Iranian Journal of Neonatology 7, 710.Google Scholar
Endo, S, Suzuki, Y, Takahashi, G, Shozushima, T, Ishikura, H, Murai, A, Nishida, T, Irie, Y, Miura, M, Iguchi, H, Fukui, Y, Tanaka, K, Nojima, T and Okamura, Y (2012) Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. Journal of Infection and Chemotherapy 18, 891897.CrossRefGoogle Scholar
Enguix-Armada, A, Escobar-Conesa, R, La Torre, AG-D and De La Torre-Prados, MV (2016) Usefulness of several biomarkers in the management of septic patients: C-reactive protein, procalcitonin, presepsin and mid-regional pro-adrenomedullin. Clinical Chemistry and Laboratory Medicine 54, 163168.CrossRefGoogle ScholarPubMed
Ercan, N, Tuzcu, N, Başbug, O, Tuzcu, M and Alim, A (2016) Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis. Journal of Veterinary Diagnostic Investigation 28, 180183.CrossRefGoogle ScholarPubMed
Escribano, D, Gutiérrez, AM, Tecles, F and Cerón, JJ (2015 a) Changes in saliva biomarkers of stress and immunity in domestic pigs exposed to a psychosocial stressor. Research in Veterinary Science 102, 3844.CrossRefGoogle ScholarPubMed
Escribano, D, Tvarijonaviciute, A, Tecles, F and Cerón, JJ (2015 b) Serum paraoxonase type-1 activity in pigs: assay validation and evolution after an induced experimental inflammation. Veterinary Immunology and Immunopathology 163, 210215.Google ScholarPubMed
Faix, JD (2013) Biomarkers of sepsis. Critical Reviews in Clinical Laboratory Sciences 50, 2336.CrossRefGoogle ScholarPubMed
Fecteau, G, Smith, BP and George, LW (2009) Septicemia and meningitis in the newborn calf. Veterinary Clinics of North America – Food Animal Practice 25, 195208.CrossRefGoogle ScholarPubMed
Feezor, RJ, Oberholzer, C, Baker, HV, Novick, D, Rubinstein, M, Moldawer, LL, Pribble, J, Souza, S, Dinarello, CA, Ertel, W and Oberholzer, A (2003) Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria. Infection and Immunity 71, 58035813.CrossRefGoogle ScholarPubMed
Flanders, SA, Stein, J, Shochat, G, Sellers, K, Holland, M, Maselli, J, Drew, WL, Reingold, AL and Gonzales, R (2004) Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. American Journal of Medicine 116, 529535.CrossRefGoogle Scholar
Fogle, J, Jacob, M, Blikslager, A, Edwards, A, Wagner, B, Dean, K and Fogle, C (2017) Comparison of lipopolysaccharides and soluble CD14 measurement between clinically endotoxaemic and nonendotoxaemic horses. Equine Veterinary Journal 49, 155159.CrossRefGoogle ScholarPubMed
Franco-Martínez, L, Muñoz-Prieto, A, Contreras-Aguilar, MD, Želvytė, R, Monkevičienė, I, Horvatić, A, Kuleš, J, Mrljak, V, Cerón, JJ and Escribano, D (2021) Changes in saliva proteins in cows with mastitis: a proteomic approach. Research in Veterinary Science 140, 9199.CrossRefGoogle ScholarPubMed
Francoz, D, Desrochers, A, Simard, N, Saint Pierre, Y, Fecteau, G, Latouche, JS and Fortin, M (2008) Relative expression of matrix metalloproteinase-2 and -9 in synovial fluid from healthy calves and calves with experimentally induced septic arthritis. American Journal of Veterinary Research 69, 10221028.CrossRefGoogle ScholarPubMed
Fugler, LA, Eades, SC, Moore, RM, Koch, CE and Keowen, ML (2013) Plasma matrix metalloproteinase activity in horses after intravenous infusion of lipopolysaccharide and treatment with matrix metalloproteinase inhibitors. American Journal of Veterinary Research 74, 473480.CrossRefGoogle ScholarPubMed
Garbero, RdeF, Simões, AA, Martins, GA, Cruz, LVda and von Zuben, VGM (2019) SOFA and qSOFA at admission to the emergency department: diagnostic sensitivity and relation with prognosis in patients with suspected infection. Turkish Journal of Emergency Medicine 19, 106110.CrossRefGoogle Scholar
Gentile, LF, Cuenca, AG, Vanzant, EL, Efron, PA, Mckinley, B, Moore, F and Moldawer, LL (2014) Is there value in plasma cytokine measurements in patients with severe trauma and sepsis. Methods 61, 39.CrossRefGoogle Scholar
Giamarellos-Bourboulis, EJ, Grecka, P, Poulakou, G, Anargyrou, K, Katsilambros, N and Giamarellou, H (2001) Assessment of procalcitonin as a diagnostic marker of underlying infection in patients with febrile neutropenia. Clinical Infectious Diseases 32, 17181725.CrossRefGoogle ScholarPubMed
Giannakopoulos, K, Hoffmann, U, Ansari, U, Bertsch, T, Borggrefe, M, Akin, I and Behnes, M (2017) The use of biomarkers in sepsis: a systematic review. Current Pharmaceutical Biotechnology 18, 499507.CrossRefGoogle ScholarPubMed
Gibot, S, Kolopp-Sarda, MN, Béné, MC, Cravoisy, A, Levy, B, Faure, GC and Bollaert, PE (2004) Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Annals of Internal Medicine 141, 916.CrossRefGoogle ScholarPubMed
Giguère, S, Hernandez, J, Gaskin, J, Miller, C and Bowman, JL (2003) Evaluation of white blood cell concentration, plasma fibrinogen concentration, and an agar gel immunodiffusion test for early identification of foals with Rhodococcus equi pneumonia. Journal of the American Veterinary Medical Association 222, 775781.CrossRefGoogle Scholar
Girard, M, Cléroux, P, Tremblay, P, Dea, S and St-Pierre, Y (2001) Increased proteolytic activity and matrix metalloprotease expression in lungs during infection by porcine reproductive and respiratory syndrome virus. Journal of General Virology 82, 12531261.CrossRefGoogle ScholarPubMed
Gnauck, A, Lentle, RG and Kruger, MC (2016) Chasing a ghost? Issues with the determination of circulating levels of endotoxin in human blood. Critical Reviews in Clinical Laboratory Sciences 53, 197215.CrossRefGoogle ScholarPubMed
Gómez-Laguna, J, Salguero, FJ, Pallarés, FJ, Fernández de Marco, M, Barranco, I, Cerón, JJ, Martínez-Subiela, S, Van Reeth, K and Carrasco, L (2010) Acute phase response in porcine reproductive and respiratory syndrome virus infection. Comparative Immunology, Microbiology and Infectious Diseases 33, 5158.Google ScholarPubMed
Gotts, JE and Matthay, MA (2016) Sepsis: pathophysiology and clinical management. BMJ (Online) 353, 120.Google ScholarPubMed
Grondman, I, Pirvu, A, Riza, A, Ioana, M and Netea, MG (2020) Biomarkers of inflammation and the etiology of sepsis. Biochemical Society Transactions 48, 114.CrossRefGoogle Scholar
Guzelbektes, H, Sen, I, Ok, M, Constable, PD, Boydak, M and Coskun, A (2010) Serum amyloid a and haptoglobin concentrations and liver fat percentage in lactating dairy cows with abomasal displacement. Journal of Veterinary Internal Medicine 24, 213219.CrossRefGoogle ScholarPubMed
Hamo, Z, Azrad, M, Nitzan, O, Sagie, A, Tkhawkho, L, Binyamin, D and Peretz, A (2017) Role of single procalcitonin test on admission as a biomarker for predicting the severity of Clostridium difficile infection. Frontiers in Microbiology 8, 16.CrossRefGoogle ScholarPubMed
Heegaard, PMH, Godson, DL, Toussaint, MJM, Tjørnehøj, K, Larsen, LE, Viuff, B and Rønsholt, L (2000) The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus. Veterinary Immunology and Immunopathology 77, 151159.CrossRefGoogle ScholarPubMed
Heegaard, PMH, Stockmarr, A, Pĩeiro, M, Carpintero, R, Lampreave, F, Campbell, FM, Eckersall, P, Toussaint, MJM, Gruys, E and Sorensen, N (2011) Optimal combinations of acute phase proteins for detecting infectious disease in pigs. Veterinary Research 42, 113.CrossRefGoogle ScholarPubMed
Heinonen, M, Orro, T, Kokkonen, T, Munsterhjelm, C, Peltoniemi, O and Valros, A (2010) Tail biting induces a strong acute phase response and tail-end inflammation in finishing pigs. Veterinary Journal 184, 303307.Google Scholar
Hinds, CA, Niehaus, AJ, Premanandan, C, Rajala-Schultz, PJ, Rings, DM and Lakritz, J (2014) Characterization of the contributions of Hp-MMP 9 to the serum acute phase protein response of lipopolysaccharide challenged calves. BMC Veterinary Research 10, 19.CrossRefGoogle Scholar
Hocking, L, Ali, G-C, d'Angelo, C, Deshpande, A, Stevenson, C, Virdee, M and Guthrie, S (2021) A rapid evidence assessment exploring whether antimicrobial resistance complicates non-infectious health conditions and healthcare services, 2010–20. JAC-Antimicrobial Resistance 3, 18.CrossRefGoogle ScholarPubMed
Hoffmann, U, Bertsch, T, Dvortsak, E, Liebetrau, C, Lang, S, Liebe, V, Huhle, G, Borggrefe, M and Brueckmann, M (2006) Matrix-metalloproteinases and their inhibitors are elevated in severe sepsis: prognostic value of TIMP-1 in severe sepsis. Scandinavian Journal of Infectious Diseases 38, 867872.CrossRefGoogle ScholarPubMed
Hoffmann, U, Brueckmann, M and Borggrefe, M (2009) Matrix metalloproteinases and their inhibitors: promising novel biomarkers in severe sepsis? Critical Care 3, 1315.Google Scholar
Holowaychuk, MK and Martin, LG (2007) Review of hypocalcemia in septic patients: state-of-the-art review. Journal of Veterinary Emergency and Critical Care 17, 348358.CrossRefGoogle Scholar
Holub, M, Lawrence, DA, Andersen, N, Davidová, A, Beran, O, Marešová, V and Chalupa, P (2013) Cytokines and chemokines as biomarkers of community-acquired bacterial infection. Mediators of Inflammation 2013, 17.CrossRefGoogle ScholarPubMed
Horadagoda, NU, Knox, KM, Gibbs, HA, Reid, SW, Horadagoda, A, Edwards, SE and Eckersall, PD (1999) Acute phase proteins in cattle: discrimination between acute and chronic inflammation. The Veterinary Record 144, 437441.CrossRefGoogle ScholarPubMed
Hotchkiss, RS and Karl, IE (2003) The pathophysiology and treatment of sepsis. New England Journal of Medicine 348, 138150.CrossRefGoogle ScholarPubMed
Hulten, C and Demmers, S (2002) Serum amyloid A (SAA) as an aid in the management of infectious disease in the foal: comparison with total leucocyte count, neutrophil count and fibrinogen. Equine Veterinary Journal 34, 693698.CrossRefGoogle ScholarPubMed
Hultén, C, Grönlund, U, Hirvonen, J, Tulamo, R-M, Suominen, MM, Marhaug, G and Forsberg, M (2010) Dynamics in serum of the inflammatory markers serum amyloid A (SAA), haptoglobin, fibrinogen and α2-globulins during induced noninfectious arthritis in the horse. Equine Veterinary Journal 34, 699704.CrossRefGoogle Scholar
Hussain, SA, Uppal, SK, Randhawa, CS and Sood, NK (2015) Bovine intestinal obstruction: blood gas analysis, serum C-reactive protein and clinical, haematological and biochemical alterations. Journal of Applied Animal Research 43, 224230.CrossRefGoogle Scholar
Irmak, K, Sen, I, Cöl, R, Birdane, FM, Güzelbektes, H, Civelek, T, Yilmaz, A and Turgut, K (2006) The evaluation of coagulation profiles in calves with suspected septic shock. Veterinary Research Communications 30, 497503.CrossRefGoogle ScholarPubMed
Ismail, ZB, Al-Majali, AM, Al-Rawashdeh, O, Daradka, M and Mohaffel, M (2019) Alterations of pancreatic functions and lipid profiles in dairy cows with left displacement of the abomasum. Veterinarni Medicina 64, 204208.CrossRefGoogle Scholar
Ivady, B, Beres, BJ and Szabo, D (2011) Recent advances in sepsis research: novel biomarkers and therapeutic targets. Current Medicinal Chemistry 18, 32113225.CrossRefGoogle ScholarPubMed
Jacobsen, S and Andersen, PH (2007) The acute phase protein serum amyloid a (SAA) as a marker of inflammation in horses. Equine Veterinary Education 19, 3846.CrossRefGoogle Scholar
Jacobson, M, Lindberg, JE, Lindberg, R, Af Segerstad, CH, Wallgren, P, Fellström, C, Hultén, C and Jensen-Waern, M (2001) Intestinal cannulation: model for study of the midgut of the pig. Comparative Medicine 51, 163170.Google ScholarPubMed
Jain, S, Gautam, V and Naseem, S (2011) Acute-phase proteins: as diagnostic tool. Journal of Pharmacy and Bioallied Sciences 3, 118127.CrossRefGoogle ScholarPubMed
Jensen, JU, Heslet, L, Jensen, TH, Espersen, K, Steffensen, P and Tvede, M (2006) Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Critical Care Medicine 34, 25962602.CrossRefGoogle ScholarPubMed
Jereb, M, Mavric, M, Skvarc, M, Drobnic, A, Dolenc, S, Strunjas, NP, Luksic, B and Kmet, NG (2019) Usefulness of presepsin as diagnostic and prognostic marker of sepsis in daily clinical practice. Journal of Infection in Developing Countries 13, 10381044.CrossRefGoogle ScholarPubMed
Joshi, V, Gupta, VK, Bhanuprakash, AG, Mandal, RSK, Dimri, U and Ajith, Y (2018) Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves. Microbial Pathogenesis 116, 3337.CrossRefGoogle ScholarPubMed
Kabir, K, Keller, H, Grass, G, Minor, T, Stueber, F, Schroeder, S, Putensen, C, Paul, C, Burger, C, Rangger, C, Neville, LF and Mathiak, G (2003) Cytokines and chemokines in serum and urine as early predictors to identify septic patients on intensive care unit. International Journal of Molecular Medicine 12, 565570.Google ScholarPubMed
Kabu, M, Elitok, B and Kucukkurt, I (2016) Detection of serum amyloid-A concentration in the calf clinically diagnosed with pneumonia, enteritis and pneumoenteritis. Ciência Rural 46, 293299.CrossRefGoogle Scholar
Kelly, A and Levine, MA (2013) Hypocalcemia in the critically ill patient. Journal of Intensive Care Medicine 28, 166177.CrossRefGoogle ScholarPubMed
Kibe, S, Adams, K and Barlow, G (2011) Diagnostic and prognostic biomarkers of sepsis in critical care. Journal of Antimicrobial Chemotherapy 66, 3340.CrossRefGoogle ScholarPubMed
Kilcoyne, I, Nieto, JE and Dechant, JE (2020) Diagnostic value of plasma and peritoneal fluid procalcitonin concentrations in horses with strangulating intestinal lesions. Journal of the American Veterinary Medical Association 256, 927933.Google ScholarPubMed
Kirbas, A, Kandemir, FM, Celebi, D, Hanedan, B and Timurkan, MO (2019) The use of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia. Acta Veterinaria Hungarica 67, 360376.CrossRefGoogle ScholarPubMed
Koizumi, Y, Sakanashi, D, Mohri, T, Watanabe, H, Shiota, A, Asai, N, Kato, H, Hagihara, M, Murotani, K, Yamagishi, Y, Suematsu, H and Mikamo, H (2020) Can presepsin uniformly respond to various pathogens? An in vitro assay of new sepsis marker. BMC Immunology 21, 33.CrossRefGoogle Scholar
Lauritzen, B, Lykkesfeldt, J, Skaanild, MT, Angen, Ø, Nielsen, JP and Friis, C (2003) Putative biomarkers for evaluating antibiotic treatment: an experimental model of porcine Actinobacillus pleuropneumoniae infection. Research in Veterinary Science 74, 261270.CrossRefGoogle ScholarPubMed
Lee, WC, Hsiao, HC, Wu, YL, Lin, JH, Lee, YP, Fung, HP, Chen, HH, Chen, YH and Chu, RM (2003) Serum C-reactive protein in dairy herds. Canadian Journal of Veterinary Research 67, 102107.Google ScholarPubMed
Levy, MM, Fink, MP, Marshall, JC, Abraham, E, Angus, D, Cook, D, Cohen, J, Opal, SM, Vincent, JL and Ramsay, G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Critical Care Medicine 31, 12501256.CrossRefGoogle ScholarPubMed
Lewis, DH, Chan, DL, Pinheiro, D, Armitage-Chan, E and Garden, OA (2012) The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. Journal of Veterinary Internal Medicine 26, 457482.CrossRefGoogle ScholarPubMed
Lin, GL, McGinley, JP, Drysdale, SB and Pollard, AJ (2018) Epidemiology and immune pathogenesis of viral sepsis. Frontiers in Immunology 9, 2147.CrossRefGoogle ScholarPubMed
Linscheid, P, Seboek, D, Nylen, ES, Langer, I, Schlatter, M, Becker, KL, Keller, U and Müller, B (2003) In vitro and in vivo calcitonin I gene expression in parenchymal cells: a novel product of human adipose tissue. Endocrinology 144, 55785584.CrossRefGoogle ScholarPubMed
Liu, B, Chen, YX, Yin, Q, Zhao, YZ and Li, CS (2013) Diagnostic value and prognostic evaluation of presepsin for sepsis in an emergency department. Critical Care 17, 1.CrossRefGoogle Scholar
Liu, HH, Guo, JB, Geng, Y and Su, L (2015) Procalcitonin: present and future. Irish Journal of Medical Science 184, 597605.CrossRefGoogle ScholarPubMed
Liu, Y, Hou, J-h, Li, Q, Chen, K-j, Wang, SN and Wang, J-m (2016) Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: a systematic review and meta-analysis. SpringerPlus 5, 2091.CrossRefGoogle ScholarPubMed
Liu, Y, Xu, Q, Wang, Y, Liang, T, Li, X, Wang, D, Wang, X, Zhu, H and Xiao, K (2021) Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death and Disease 12, 114.Google Scholar
Martin, GS (2012) Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Review of Anti-Infective Therapy 10, 701706.CrossRefGoogle ScholarPubMed
Martín de la Fuente, AJ, Carpintero, R, Rodríguez Ferri, EF, Álava, MA, Lampreave, F and Gutiérrez Martín, CB (2010) Acute-phase protein response in pigs experimentally infected with Haemophilus parasuis. Comparative Immunology, Microbiology and Infectious Diseases 33, 455465.CrossRefGoogle ScholarPubMed
Matera, G, Quirino, A, Giancotti, A, Pulicari, MC, Rametti, L, Rodríguez, ML, Liberto, MC and Focà, A (2012) Procalcitonin neutralizes bacterial LPS and reduces LPS-induced cytokine release in human peripheral blood mononuclear cells. BMC Microbiology 12, 68.CrossRefGoogle ScholarPubMed
Matur, E, Eraslan, E and Çötelioğlu, Ü (2017) Biology of procalcitonin and its potential role in veterinary medicine. Journal of Istanbul Veterinary Sciences 1, 1627.CrossRefGoogle Scholar
Mccormack, D, Kulkarni, M, Sperling, J and Keller, S (2017) The use of qSOFA for sepsis in the emergency department. In: Sepsis. smgebooks.comGoogle Scholar
Mehanic, S and Baljic, R (2013) The importance of serum procalcitonin in diagnosis and treatment of serious bacterial infections and sepsis. Materia Socio Medica 25, 277.CrossRefGoogle ScholarPubMed
Memar, MY and Baghi, HB (2019) Presepsin: a promising biomarker for the detection of bacterial infections. Biomedicine and Pharmacotherapy 111, 649656.CrossRefGoogle ScholarPubMed
Mera, S, Tatulescu, D, Cismaru, C, Bondor, C, Slavcovici, A, Zanc, V, Carstina, D and Oltean, M (2011) Multiplex cytokine profiling in patients with sepsis. APMIS Journal of Pathology, Microbiology and Immunology 119, 155163. doi: 10.1111/j.1600-0463.2010.02705.x.CrossRefGoogle Scholar
Mikkelsen, ME, Miltiades, AN, Gaieski, DF, Goyal, M, Fuchs, BD, Shah, CV, Bellamy, SL and Christie, JD (2009) Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Critical Care Medicine 37, 16701677.CrossRefGoogle ScholarPubMed
Monastero, RN and Pentyala, S (2017) Cytokines as biomarkers and their respective clinical cutoff levels. International Journal of Inflammation 2017, 111.CrossRefGoogle ScholarPubMed
Monneret, G, Pachot, A, Laroche, B, Picollet, J and Bienvenu, J (2000) Procalcitonin and calcitonin gene-related peptide decrease LPS-induced TNF production by human circulating blood cells. Cytokine 12, 762764.CrossRefGoogle ScholarPubMed
Moore, DF, Rosenfeld, MR, Gribbon, PM, Winlove, CP and Tsai, CM (1997) Alpha-1-acid (AAG, orosomucoid) glycoprotein: interaction with bacterial lipopolysaccharide and protection from sepsis. Inflammation 21, 6982.CrossRefGoogle ScholarPubMed
Morgenthaler, NG, Struck, J, Chancerelle, Y, Weglöhner, W, Agay, D, Bohuon, C, Suarez-Domenech, V, Bergmann, A and Müller, B (2003) Production of procalcitonin (PCT) in non-thyroidal tissue after LPS injection. Hormone and Metabolic Research 35, 290295.Google ScholarPubMed
Motzkus, CA and Luckmann, R (2017) Does infection site matter? A systematic review of infection site mortality in sepsis. Journal of Intensive Care Medicine 32, 473479.CrossRefGoogle Scholar
Müller, B, Harbarth, S, Stolz, D, Bingisser, R, Mueller, C, Leuppi, J, Nusbaumer, C, Tamm, M and Christ-Crain, M (2007) Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infectious Diseases 7, 110.CrossRefGoogle ScholarPubMed
Murata, H and Miyamoto, T (1993) Bovine haptoglobin as a possible immunomodulator in the sera of transported calves. British Veterinary Journal 149, 277283.CrossRefGoogle ScholarPubMed
Murphy, D, Ricci, A, Auce, Z, Beechinor, JG, Bergendahl, H, Breathnach, R, Bureš, J, Duarte Da Silva, JP, Hederová, J, Hekman, P, Ibrahim, C, Kozhuharov, E, Kulcsár, G, Lander Persson, E, Lenhardsson, JM, Mačiulskis, P, Malemis, I, Markus-Cizelj, L, Michaelidou-Patsia, A, Nevalainen, M, Pasquali, P, Rouby, J, Schefferlie, J, Schlumbohm, W, Schmit, M, Spiteri, S, Srčič, S, Taban, L, Tiirats, T, Urbain, B, Vestergaard, E, Wachnik-Święcicka, A, Weeks, J, Zemann, B, Allende, A, Bolton, D, Chemaly, M, Fernandez Escamez, PS, Girones, R, Herman, L, Koutsoumanis, K, Lindqvist, R, Nørrung, B, Robertson, L, Ru, G, Sanaa, M, Simmons, M, Skandamis, P, Snary, E, Speybroeck, N, Ter Kuile, B, Wahlström, H, Baptiste, K, Catry, B, Cocconcelli, PS, Davies, R, Ducrot, C, Friis, C, Jungersen, G, More, S, Muñoz Madero, C, Sanders, P, Bos, M, Kunsagi, Z, Torren Edo, J, Brozzi, R, Candiani, D, Guerra, B, Liebana, E, Stella, P, Threlfall, J and Jukes, H (2017) EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA Journal 15, 2091.Google Scholar
Mussap, M, Puxeddu, E, Burrai, P, Noto, A, Cibecchini, F, Testa, M, Puddu, M, Ottonello, G, Dessì, A, Irmesi, R, Gassa, ED, Fanni, C and Fanos, V (2012) Soluble CD14 subtype (sCD14-ST) presepsin in critically ill preterm newborns: preliminary reference ranges. Journal of Maternal-Fetal and Neonatal Medicine 25, 5153.CrossRefGoogle ScholarPubMed
Nakagawa, H, Yamamoto, O, Oikawa, S, Higuchi, H, Watanabe, A and Katoh, N (1997) Detection of serum haptoglobin by enzyme-linked immunosorbent assay in cows with fatty liver. Research in Veterinary Science 62, 137141.CrossRefGoogle ScholarPubMed
Nakajima, Y, Momotani, E, Murakami, T, Ishikawa, Y, Morimatsu, M, Saito, M, Suzuki, H and Yasukawa, K (1993) Induction of acute phase protein by recombinant human interleukin-6 (IL-6) in calves. Veterinary Immunology and Immunopathology 35, 385391.CrossRefGoogle Scholar
Nakamura, M, Kono, R, Nomura, S and Utsunomiya, H (2013) Procalcitonin: mysterious protein in sepsis. Journal of Basic & Clinical Medicine 2, 37.Google Scholar
Nijsten, MWN, Olinga, P, Hauw The, T, De Vries, EGE, Koops, HS, Groothuis, GMM, Limburg, PC, Ten Duis, HJ, Moshage, H, Hoekstra, HJ, Bijzet, J and Zwaveling, JH (2000) Procalcitonin behaves as a fast responding acute phase protein in vivo and in vitro. Critical Care Medicine 28, 458461.CrossRefGoogle ScholarPubMed
Nunokawa, Y, Fujinaga, T, Taira, T, Okumura, M, Yamashita, K, Tsunoda, N and Hagio, M (1993) Evaluation of serum amyloid A protein as an acute-phase reactive protein in horses. The Journal of Veterinary Medical Science 55, 10111016.CrossRefGoogle ScholarPubMed
Orlikowsky, TW, Neunhoeffer, F, Goelz, R, Eichner, M, Henkel, C, Zwirner, M and Poets, CF (2004) Evaluation of IL-8-concentrations in plasma and lysed EDTA-blood in healthy neonates and those with suspected early onset bacterial infection. Pediatric Research 56, 804809.CrossRefGoogle ScholarPubMed
Ouderkirk, JP, Nord, JA, Turett, GS and Kislak, JW (2003) Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant gram-negative bacteria. Antimicrobial Agents and Chemotherapy 47, 26592662.CrossRefGoogle ScholarPubMed
Parra, MD, Fuentes, P, Tecles, F, Martínez-Subiela, S, Martínez, JS, Muñoz, A and Cerón, JJ (2006) Porcine acute phase protein concentrations in different diseases in field conditions. Journal of Veterinary Medicine Series B: Infectious Diseases and Veterinary Public Health 53, 488493.CrossRefGoogle ScholarPubMed
Paulus, P, Jennewein, C and Zacharowski, K (2011) Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers 16, S11S21.CrossRefGoogle ScholarPubMed
Peach, BC (2017) Implications of the new sepsis definition on research and practice. Journal of Critical Care 38, 259262.CrossRefGoogle ScholarPubMed
Peek, SF, Borah, S, Semrad, S, McGuirk, S, Slack, JA, Patton, E, Coombs, D, Lien, L and Darien, BJ (2004) Plasma endotoxin concentration in horses: a methods study. Veterinary Clinical Pathology 33, 2931.CrossRefGoogle ScholarPubMed
Peralta, G, Sánchez, MB, Garrido, JC, De Benito, I, Cano, ME, Martínez-Martínez, L and Roiz, MP (2007) Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with Escherichia coli bacteraemia. Journal of Antimicrobial Chemotherapy 60, 855863.CrossRefGoogle ScholarPubMed
Petersen, HH, Nielsen, JP and Heegaard, PMH (2004) Application of acute phase protein measurements in veterinary clinical chemistry. Veterinary Research 35, 163187.CrossRefGoogle ScholarPubMed
Pettilä, V, Pentti, J, Pettilä, M, Takkunen, O and Jousela, I (2002) Predictive value of antithrombin III and serum C-reactive protein concentration in critically ill patients with suspected sepsis. Critical Care Medicine 30, 271275.CrossRefGoogle ScholarPubMed
Pierrakos, C and Vincent, JL (2010) Sepsis biomarkers: a review. Critical Care 14, 118.CrossRefGoogle ScholarPubMed
Poggi, C, Vasarri, MV, Boni, L, Pugni, L, Mosca, F and Dani, C (2020) Reference ranges of presepsin in preterm infants in the first 48 h of life: a multicenter observational study. Clinica Chimica Acta 508, 191196.CrossRefGoogle ScholarPubMed
Pomorska-Mól, M, Markowska-Daniel, I, Kwit, K, Czyżewska, E, Dors, A, Rachubik, J and Pejsak, Z (2014) Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus. Archives of Virology 159, 26052614.CrossRefGoogle ScholarPubMed
Pourjafar, M, Badiei, K, Nazifi, S and Naghib, SM (2011) Acute phase response in Holstein dairy calves affected with diarrhoea. Bulgarian Journal of Veterinary Medicine 14, 142149.Google Scholar
Pradeep, M (2014) Application of acute phase proteins as biomarkers in modern veterinary practice. Indian Journal of Veterinary and Animal Science 43, 113.Google Scholar
Prohl, A, Schroedl, W, Rhode, H and Reinhold, P (2015) Acute phase proteins as local biomarkers of respiratory infection in calves. BMC Veterinary Research 11, 114.CrossRefGoogle ScholarPubMed
Punyadeera, C, Schneider, EM, Schaffer, D, Hsu, HY, Joos, TO, Kriebel, F, Weiss, M and Verhaegh, WFJ (2010) A biomarker panel to discriminate between systemic inflammatory response syndrome and sepsis and sepsis severity. Journal of Emergencies, Trauma and Shock 3, 2635.CrossRefGoogle ScholarPubMed
Qu, JM and Summah, H (2009) Biomarkers: a definite plus in pneumonia. Mediators of Inflammation 2009, 19.Google Scholar
Quereda, JJ, Gómez, S, Seva, J, Ramis, G, Cerón, JJ, Muñoz, A and Pallarés, FJ (2012) Acute phase proteins as a tool for differential diagnosis of wasting diseases in growing pigs. Veterinary Record 170, 21.CrossRefGoogle ScholarPubMed
Raulo, SM, Sorsa, T, Tervahartiala, T, Latvanen, T, Pirilä, E, Hirvonen, J and Maisi, P (2002) Increase in milk metalloproteinase activity and vascular permeability in bovine endotoxin-induced and naturally occurring Escherichia coli mastitis. Veterinary Immunology and Immunopathology 85, 137145.CrossRefGoogle ScholarPubMed
Reczyńska, D, Zalewska, M, Czopowicz, M, Kaba, J, Zwierzchowski, L and Bagnicka, E (2018) Acute phase protein levels as an auxiliary tool in diagnosing viral diseases in ruminants – a review. Viruses 10, 114.CrossRefGoogle ScholarPubMed
Reinhart, K, Bauer, M, Riedemann, NC and Hartog, CS (2012) New approaches to sepsis: molecular diagnostics and biomarkers. Clinical Microbiology Reviews 25, 609634.CrossRefGoogle ScholarPubMed
Riedel, S and Carroll, KC (2013) Laboratory detection of sepsis: biomarkers and molecular approaches. Clinics in Laboratory Medicine 33, 413437.CrossRefGoogle ScholarPubMed
Rieger, M, Kochleus, C, Teschner, D, Rascher, D, Barton, AK, Geerlof, A, Kremmer, E, Schmid, M, Hartmann, A and Gehlen, H (2014) A new ELISA for the quantification of equine procalcitonin in plasma as potential inflammation biomarker in horses. Analytical and Bioanalytical Chemistry 406, 55075512.CrossRefGoogle Scholar
Rivera-Gomis, J, Rubio, CP, Conesa, CM, Salaverri, JO, Cerón, JJ, Tortosa, DE and Pablo, MJC (2020) Effects of dietary supplementation of garlic and oregano essential oil on biomarkers of oxidative status, stress and inflammation in postweaning piglets. Animals 10, 117.CrossRefGoogle ScholarPubMed
Rivers, EP, McCord, J, Otero, R, Jacobsen, G and Loomba, M (2007) Clinical utility of B-type natriuretic peptide in early severe sepsis and septic shock. Journal of Intensive Care Medicine 22, 363373.CrossRefGoogle ScholarPubMed
Robinson, TP, Bu, DP, Carrique-Mas, J, Fèvre, EM, Gilbert, M, Grace, D, Hay, SI, Jiwakanon, J, Kakkar, M, Kariuki, S, Laxminarayan, R, Lubroth, J, Magnusson, U, Ngoc, PT, Van Boeckel, TP and Woolhouse, MEJ (2016) Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene 110, 377380.CrossRefGoogle ScholarPubMed
Romualdo, LGde, Torrella, PE, González, MV, Sánchez, RJ, Holgado, AH, Freire, AO, Acebes, SR and Otón, MDA (2014) Diagnostic accuracy of presepsin (soluble CD14 subtype) for prediction of bacteremia in patients with systemic inflammatory response syndrome in the Emergency Department. Clinical Biochemistry 47, 505508.CrossRefGoogle ScholarPubMed
Roy, MF, Kwong, GPS, Lambert, J, Massie, S and Lockhart, S (2017) Prognostic value and development of a scoring system in horses with systemic inflammatory response syndrome. Journal of Veterinary Internal Medicine 31, 582592.CrossRefGoogle ScholarPubMed
Sager, R, Kutz, A, Mueller, B and Schuetz, P (2017) Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Medicine 15, 15.CrossRefGoogle ScholarPubMed
Sakr, Y, Burgett, U, Nacul, FE, Reinhart, K and Brunkhorst, F (2008) Lipopolysaccharide binding protein in a surgical intensive care unit: a marker of sepsis? Critical Care Medicine 36, 20142022.CrossRefGoogle Scholar
Sánchez-cordón, PJ, Cerón, JJ, Núñez, A, Martínez-subiela, S, Pedrera, M, Romero-trevejo, JL, Garrido, MR and Gómez-villamandos, JC (2007) Serum concentrations of C-reactive protein, serum amyloid A, and haptoglobin in pigs inoculated with A swine fever or classical swine fever viruses. American Journal of Veterinary Research 68, 772777.CrossRefGoogle ScholarPubMed
Scavone, D, Sgorbini, M, Borges, AS, Oliveira-Filho, JP, Vitale, V and Paltrinieri, S (2020) Serial measurements of paraoxonase-1 (PON-1) activity in horses with experimentally induced endotoxemia. BMC Veterinary Research 16, 17.CrossRefGoogle ScholarPubMed
Scheerlinck, JPY and Yen, HH (2005) Veterinary applications of cytokines. Veterinary Immunology and Immunopathology 108, 1722.CrossRefGoogle ScholarPubMed
Schmit, X and Vincent, JL (2008) The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 36, 213219.CrossRefGoogle Scholar
Schneider, HG and Lam, QT (2007) Procalcitonin for the clinical laboratory: a review. Pathology 39, 383390.CrossRefGoogle ScholarPubMed
Schneider, A, Corrêa, MN and Butler, WR (2013) Short communication: acute phase proteins in Holstein cows diagnosed with uterine infection. Research in Veterinary Science 95, 269271.CrossRefGoogle ScholarPubMed
Schrödl, W, Büchler, R, Wendler, S, Reinhold, P, Muckova, P, Reindl, J and Rhode, H (2016) Acute phase proteins as promising biomarkers: perspectives and limitations for human and veterinary medicine. PROTEOMICS – Clinical Applications 10, 10771092.CrossRefGoogle ScholarPubMed
Schroedl, W, Fuerll, B, Reinhold, P, Krueger, M and Schuett, C (2001) A novel acute phase marker in cattle: lipopolysaccharide binding protein (LBP). Journal of Endotoxin Research 7, 4952.CrossRefGoogle Scholar
Schuetz, P, Christ-Crain, M and Müller, B (2007) Biomarkers to improve diagnostic and prognostic accuracy in systemic infections. Current Opinion in Critical Care 13, 578585.CrossRefGoogle ScholarPubMed
Schuetz, P, Albrich, W and Mueller, B (2011) Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Medicine 9, 107.CrossRefGoogle ScholarPubMed
Senior, JM, Proudman, CJ, Leuwer, M and Carter, SD (2011) Plasma endotoxin in horses presented to an equine referral hospital: correlation to selected clinical parameters and outcomes. Equine Veterinary Journal 43, 585591.CrossRefGoogle Scholar
Serafim, R, Gomes, JA, Salluh, J and Póvoa, P (2018) A comparison of the quick-SOFA and systemic inflammatory response syndrome criteria for the diagnosis of sepsis and prediction of mortality: a systematic review and meta-analysis. Chest 153, 646655.CrossRefGoogle Scholar
Shainkin-Kestenbaum, R, Berlyne, G, Zimlichman, S, Sorin, HR, Nyska, M and Danon, A (1991) Acute phase protein, serum amyloid A, inhibits IL-1- and TNF-induced fever and hypothalamic PGE2 in mice. Scandinavian Journal of Immunology 34, 179183.CrossRefGoogle ScholarPubMed
Shozushima, T, Takahashi, G, Matsumoto, N, Kojika, M, Endo, S and Okamura, Y (2011) Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. Journal of Infection and Chemotherapy 17, 764769.CrossRefGoogle ScholarPubMed
Simonen-Jokinen, TLM, Eskelinen, UM, Härtel, HM, Nikunen, SK, Saloniemi, HS and Maisi, PS (2005) Gelatinolytic matrix metalloproteinases-2 and −9 in tracheobronchial lavage fluid obtained from calves with concurrent infections of Pasteurella multocida and Mycoplasma bovirhinis. American Journal of Veterinary Research 66, 21012106.CrossRefGoogle ScholarPubMed
Singer, M, Deutschman, CS, Seymour, CW, Shankar-Hari, M, Annane, D, Bauer, M, Bellomo, R, Bernard, GR, Chiche, J, Coopersmith, CM, Hotchkiss, RS, Levy, MM, Marshall, JC, Martin, GS, Opal, SM, Rubenfeld, GD, Van, DT, Vincent, J and Angus, DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801810.CrossRefGoogle Scholar
Singh, SK, Ngwa, DN and Agrawal, A (2020) Complement activation by C-reactive protein is critical for protection of mice against pneumococcal infection. Frontiers in Immunology 11, 17.CrossRefGoogle ScholarPubMed
Smyth, MA, Brace-Mcdonnell, SJ and Perkins, GD (2016) Identification of adults with sepsis in the prehospital environment: a systematic review. BMJ Open 6, e011218.CrossRefGoogle ScholarPubMed
Soni, H and Adebiyi, A (2017) Early septic insult in neonatal pigs increases serum and urinary soluble fas ligand and decreases kidney function without inducing significant renal apoptosis. Renal Failure 39, 8391.CrossRefGoogle ScholarPubMed
Sorensen, NS, Tegtmeier, C, Andresen, LO, Piñeiro, M, Toussaint, MJM, Campbell, FM, Lampreave, F and Heegaard, PMH (2006) The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis. Veterinary Immunology and Immunopathology 113, 157168.CrossRefGoogle ScholarPubMed
Spyropoulos, V, Chalkias, A, Georgiou, G, Papalois, A, Kouskouni, E, Baka, S and Xanthos, T (2019) Initial immune response in Escherichia coli, Staphylococcus aureus, and Candida albicans bacteremia. Inflammation doi: 10.1007/s10753-019-01108-9CrossRefGoogle Scholar
Surbatovic, M, Popovic, N, Vojvodic, D, Milosevic, I, Acimovic, G, Stojicic, M, Veljovic, M, Jevdjic, J, Djordjevic, D and Radakovic, S (2015) Cytokine profile in severe gram-positive and gram-negative abdominal sepsis. Scientific Reports 5, 112.CrossRefGoogle ScholarPubMed
Takata, S, Wada, H, Tamura, M, Koide, T, Higaki, M, Mikura, SI, Yasutake, T, Hirao, S, Nakamura, M, Honda, K, Nagatomo, T, Tanaka, Y, Sohara, E, Watanabe, M, Yokoyama, T, Saraya, T, Kurai, D, Ishii, H and Goto, H (2011) Kinetics of c-reactive protein (CRP) and serum amyloid A protein (SAA) in patients with community-acquired pneumonia (CAP), as presented with biologic half-life times. Biomarkers 16, 530535.CrossRefGoogle Scholar
Taylor, S (2015) A review of equine sepsis. Equine Veterinary Education 27, 99109.CrossRefGoogle ScholarPubMed
Tecles, F, Fuentes, P, Martínez Subiela, S, Parra, MD, Muñoz, A and Cerón, JJ (2007) Analytical validation of commercially available methods for acute phase proteins quantification in pigs. Research in Veterinary Science 83, 133139.CrossRefGoogle ScholarPubMed
Teschner, D, Rieger, M, Koopmann, C and Gehlen, H (2015) Procalcitonin bei Pferden mit akuter Kolik. Pferdeheilkunde 31, 371377.CrossRefGoogle Scholar
Tosi, M, Roat, E, De Biasi, S, Munari, E, Venturelli, S, Coloretti, I, Biagioni, E, Cossarizza, A and Girardis, M (2018) Multidrug resistant bacteria in critically ill patients: a step further antibiotic therapy. Journal of Emergency and Critical Care Medicine 2, 103103.CrossRefGoogle Scholar
Toth, B, Slovis, NM, Constable, PD and Taylor, SD (2014) Plasma adrenomedullin concentrations in critically ill neonatal foals. Journal of Veterinary Internal Medicine 28, 12941300.CrossRefGoogle ScholarPubMed
Tóth, J, Debreceni, IB, Berhés, M, Hajdú, E, Deák, Á, Pet, K, Szabó, J, Németh, N, Fülesdi, B and Kappelmayer, J (2017) Red blood cell and platelet parameters are sepsis predictors in an Escherichia coli induced lethal porcine model. Clinical Hemorheology and Microcirculation 66, 249259.CrossRefGoogle Scholar
Tthov, C, Nagy, O and Kov, G (2013) Chapter 5: The use of Acute Phase Proteins as Biomarkers of Diseases in Cattle and Swine. In Sabina, Janciauskiene (Ed.). Acute Phase Proteins. doi: 10.5772/55857Google Scholar
Van Boeckel, TP, Brower, C, Gilbert, M, Grenfell, BT, Levin, SA, Robinson, TP, Teillant, A and Laxminarayan, R (2015) Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the USA 112, 56495654.CrossRefGoogle ScholarPubMed
Viner, M, Mazan, M, Bedenice, D, Mapes, S and Pusterla, N (2017) Comparison of serum amyloid A in horses with infectious and noninfectious respiratory diseases. Journal of Equine Veterinary Science 49, 1113.CrossRefGoogle Scholar
Wagner, KE, Martinez, JM, Vath, SD, Snider, RH, Nylén, ES, Becker, KL, Müller, B and White, JC (2002) Early immunoneutralization of calcitonin precursors attenuates the adverse physiologic response to sepsis in pigs. Critical Care Medicine 30, 23132321.CrossRefGoogle ScholarPubMed
Wagner, B, Ainsworth, DM and Freer, H (2013) Analysis of soluble CD14 and its use as a biomarker in neonatal foals with septicemia and horses with recurrent airway obstruction. Veterinary Immunology and Immunopathology 155, 124128.CrossRefGoogle ScholarPubMed
Wei, JX, Verity, A, Garle, M, Mahajan, R and Wilson, V (2008) Examination of the effect of procalcitonin on human leucocytes and the porcine isolated coronary artery. British Journal of Anaesthesia 100, 612621.CrossRefGoogle ScholarPubMed
Weiss, SL, Fitzgerald, JC, Pappachan, J, Wheeler, D, Jaramillo-Bustamante, JC, Salloo, A, Singhi, SC, Erickson, S, Roy, JA, Bush, JL, Nadkarni, VM and Thomas, NJ (2015) Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. American Journal of Respiratory and Critical Care Medicine 191, 11471157.CrossRefGoogle ScholarPubMed
Werling, D and Coffey, TJ (2007) Pattern recognition receptors in companion and farm animals – the key to unlocking the door to animal disease? Veterinary Journal 174, 240251.CrossRefGoogle ScholarPubMed
WHO (2017) World Health Organization. Improving the prevention, diagnosis and clinical management of sepsis. Seventieth World Health Assembly. https://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R7-en.pdf?ua=1Google Scholar
Wu, J, Hu, L, Zhang, G, Wu, F and He, T (2015) Accuracy of presepsin in sepsis diagnosis: a systematic review and meta-analysis. PLoS ONE 10, 115.Google ScholarPubMed
Wyllie, DH, Bowler, ICJW and Peto, TEA (2005) Bacteraemia prediction in emergency medical admissions: role of C reactive protein. Journal of Clinical Pathology 58, 352356.CrossRefGoogle ScholarPubMed
Wyns, H, Croubels, S, Vandekerckhove, M, Demeyere, K, De Backer, P, Goddeeris, BM and Meyer, E (2015) Multiplex analysis of pro-inflammatory cytokines in serum of Actinobacillus pleuropneumoniae-infected pigs. Research in Veterinary Science 102, 4548.CrossRefGoogle ScholarPubMed
Yaegashi, Y, Sato, N, Suzuki, Y, Kojika, M, Imai, S, Takahashi, G, Miyata, M, Endo, S, Shirakawa, K and Furusako, S (2005) Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. Journal of Infection and Chemotherapy 11, 234238.CrossRefGoogle ScholarPubMed
Yamashita, K, Fujinaga, T, Okumura, M, Takiguchi, M, Tsunoda, N and Mizuno, S (1991) Serum C-reactive protein (CRP) in horses: the effect of aging, sex, delivery and inflammations on its concentration. The Journal of Veterinary Medical Science 53, 10191024.CrossRefGoogle ScholarPubMed
Yang, S-k, Xiao, L, Zhang, H, Xu, X-x, Song, P-a, Liu, F-y and Sun, L (2014) Significance of serum procalcitonin as biomarker for detection of bacterial peritonitis: a systematic review and meta-analysis. BMC Infectious Diseases 14, 452.CrossRefGoogle ScholarPubMed
Yin, C, Liu, W, Liu, Z, Huang, Y, Ci, L, Zhao, R and Yang, X (2017) Identification of potential serum biomarkers in pigs at early stage after lipopolysaccharide injection. Research in Veterinary Science 111, 140146.CrossRefGoogle ScholarPubMed
Yuan, H, Huang, J, Lv, B, Yan, W, Hu, G, Wang, J and Shen, B (2013) Diagnosis value of the serum amyloid A test in neonatal sepsis: a meta-analysis. BioMed Research International 2013, 19.Google ScholarPubMed
Zabrecky, KA, Slovis, NM, Constable, PD and Taylor, SD (2015) Plasma C-reactive protein and haptoglobin concentrations in critically ill neonatal foals. Journal of Veterinary Internal Medicine 29, 673677.CrossRefGoogle ScholarPubMed
Zahar, JR, Timsit, JF, Garrouste-Orgeas, M, Français, A, Vesim, A, Descorps-Declere, A, Dubois, Y, Souweine, B, Haouache, H, Goldgran-Toledano, D, Allaouchiche, B, Azoulay, E and Adrie, C (2011) Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Critical Care Medicine 39, 18861895.CrossRefGoogle Scholar
Zaninotto, M, Mion, MM, Cosma, C, Rinaldi, D and Plebani, M (2020) Presepsin in risk stratification of SARS-CoV-2 patients. Clinica Chimica Acta 507, 161163.CrossRefGoogle ScholarPubMed
Zannoni, A, Bernardini, C, Gentilini, F, Giunti, M, Bacci, ML and Forni, M (2010) Pulmonary kinetic expression of the endothelin system in a swine model of endotoxic shock. Veterinary Research Communications 34, 2427.CrossRefGoogle Scholar
Zannoni, A, Giunti, M, Bernardini, C, Gentilini, F, Zaniboni, A, Bacci, ML and Forni, M (2012) Procalcitonin gene expression after LPS stimulation in the porcine animal model. Research in Veterinary Science 93, 921927.CrossRefGoogle ScholarPubMed
Zhu, J, Zhong, Z, Ji, P, Li, H, Li, B, Pang, J, Zhang, J and Zhao, C (2020) Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Family Medicine and Community Health 8, 112.CrossRefGoogle ScholarPubMed