Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:41:50.341Z Has data issue: false hasContentIssue false

Pasteurella multocida and bovine respiratory disease

Published online by Cambridge University Press:  24 January 2008

S. M. Dabo
Affiliation:
Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA
J. D. Taylor
Affiliation:
Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA
A. W. Confer*
Affiliation:
Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA
*
*Corresponding author. E-mail: anthony.confer@okstate.edu

Abstract

Pasteurella multocida is a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes. P. multocida serogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle. P. multocida A:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development of P. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently available P. multocida vaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullahi, MZ, Gilmour, NJ and Poxton, IR (1990). Outer membrane proteins of bovine strains of Pasteurella multocida type A and their doubtful role as protective antigens. Journal of Medical Microbiology 32: 5561.CrossRefGoogle ScholarPubMed
Abramson, T, Kedem, H and Relman, DA (2001). Proinflammatory and proapoptotic activities associated with Bordetella pertussis filamentous hemagglutinin. Infection and Immunity 69: 26502658.CrossRefGoogle ScholarPubMed
Ackermann, MR, Cheville, NF and Gallagher, JE (1991). Colonization of the pharyngeal tonsil and respiratory tract of the gnotobiotic pig by a toxigenic strain of Pasteurella multocida type D. Veterinary Pathology 28: 267274.CrossRefGoogle ScholarPubMed
Adegboye, DS, Hallbur, PG, Cavanaugh, DL, Werdin, RE, Chase, CC, Miskimins, DW and Rosenbusch, RF (1995). Immunohistochemical and pathological study of Mycoplasma bovis-associated lung abscesses in calves. Journal of Veterinary Diagnostics Investigation 7: 333337.CrossRefGoogle ScholarPubMed
Adler, B, Bulach, D, Chung, J, Doughty, S, Hunt, M, Rajakumar, K, Serrano, M, Van Zanden, A, Zhang, Y and Ruffolo, C (1999). Candidate vaccine antigens and genes in Pasteurella multocida. Journal of Biotechnology 73: 8390.CrossRefGoogle ScholarPubMed
Akkoyunlu, M, Janson, H, Ruan, M and Forsgren, A (1996). Biological activity of serum antibodies to a nonacylated form of lipoprotein D of Haemophilus influenzae. Infection and Immunity 64: 45864592.CrossRefGoogle ScholarPubMed
Alexander, BH, MacVean, DW and Salman, MD (1989). Risk factors for lower respiratory tract disease in a cohort of feedlot cattle. Journal of the American Veterinary Medical Association 195: 207211.Google Scholar
Al-Haddawi, M, Jasni, H, Zamri-Saad, S, Mutalib, M, Zulkifli, A, Son, I and Sheikh-Omar, A (2000). In vitro study of Pasteurella multocida adhesion to trachea, lung, and aorta of rabbits. The Veterinary Journal 159: 274281.CrossRefGoogle ScholarPubMed
Ali, HA, Sawada, T, Hatakeyama, H, Ohtsuki, N and Itoh, O (2004a). Characterization of a 39 kDa capsular protein of avian Pasteurella multocida using monoclonal antibodies. Veterinary Microbiology 100: 4353.CrossRefGoogle Scholar
Ali, HA, Sawada, T and Noda, K (2004b). Protectivity of an immunoaffinity-purified 39 kDa capsular protein of avian Pasteurella multocida in mice. Journal of Veterinary Medical Science 66: 16031604.CrossRefGoogle ScholarPubMed
Allen, JW, Viel, L, Bateman, KG, Rosendal, S, Shewen, PE and Physick-Sheard, P (1991). The microbial flora of the respiratory tract in feedlot calves: associations between nasopharyngeal and bronchoalveolar lavage cultures. Canadian Journal of Veterinary Research 55: 341346.Google ScholarPubMed
Allen, JW, Viel, L, Bateman, KG, Nagy, E, Rosendal, S and Shewen, PE (1992a). Serological titers to bovine herpesvirus 1, bovine viral diarrhea virus, parainfluenza 3 virus, bovine respiratory syncytial virus and Pasteurella haemolytica in feedlot calves with respiratory disease: associations with bacteriological and pulmonary cytological variables. Canadian Journal of Veterinary Research 56: 281288.Google ScholarPubMed
Allen, JW, Viel, L, Bateman, KG, Rosendal, S and Shewen, PE (1992b). Cytological findings in bronchoalveolar lavage fluid from feedlot calves: associations with pulmonary microbial flora. Canadian Journal of Veterinary Research 56: 122126.Google ScholarPubMed
Ames, TR (1997). Dairy calf pneumonia. The disease and its impact. Veterinary Clinics of North America: Food Animal Practice 13: 379391.Google ScholarPubMed
Autio, T, Pohjanvirta, T, Holopainen, R, Rikula, U, Pentikäinen, J, Huovilainen, A, Rusanen, H, Soveri, T, Sihvonen, L and Pelkonen, S (2007). Etiology of respiratory disease in non-vaccinated, non-medicated calves in rearing herds. Veterinary Microbiology 119: 256265.CrossRefGoogle ScholarPubMed
Badie, G, Heithoff, DM, Sinsheimer, RL and Mahan, MJ (2007). Altered levels of Salmonella DNA adenine methylase are associated with defects in gene expression, motility, flagellar synthesis, and bile resistance in the pathogenic strain 14028 but not in the laboratory strain LT2. Journal of Bacteriology 189: 15561564.CrossRefGoogle Scholar
Bagley, CV, Bingham, HR and Hall, JO (2003). The association between serum mineral and vitamin A and E concentration and respiratory disease in beef calves entering backgrounding lots. Bovine Practitioners 37: 6873.CrossRefGoogle Scholar
Barenkamp, SJ (1996). Immunization with high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae modifies experimental otitis media in chinchillas. Infection and Immunity 64: 12461251.CrossRefGoogle ScholarPubMed
Barenkamp, SJ and IIISt Geme, JW (1994). Genes encoding high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae are part of gene clusters. Infection and Immunity 62: 33203328.CrossRefGoogle ScholarPubMed
Barenkamp, SJ and IIISt Geme, JW (1996a). Identification of surface-exposed B-cell epitopes on high molecular-weight adhesion proteins of nontypeable Haemophilus influenzae. Infection and Immunity 64: 30323037.CrossRefGoogle Scholar
Barenkamp, SJ and IIISt Geme, JW (1996b). Identification of a second family of high-molecular-weight adhesion proteins expressed by non-typable Haemophilus influenzae. Molecular Microbiology 19: 12151223.CrossRefGoogle ScholarPubMed
Blackall, PJ, Fegan, N, Pahoff, JL, Storie, GJ, McIntosh, GB, Cameron, RDA, O'Boyle, D, Frost, AJ, Bara, MR, Marr, G and Holder, J (2000). The molecular epidemiology of four outbreaks of porcine Pasteurellosis. Veterinary Microbiology 72: 111120.CrossRefGoogle ScholarPubMed
Blanco-Viera, FJ, Trigo, FJ, Jaramillo-Meza, L and Aguilar-Romero, F (1995). Serotypes of Pasteurella multocida and Pasteurella haemolytica isolated from pneumonic lesions in cattle and sheep from Mexico. Revista Latinoamericana de Microbiologia 37: 121126.Google ScholarPubMed
Blyn, LB, Braaten, BA and Low, DA (1990). Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. The EMBO Journal 9: 40454054.CrossRefGoogle ScholarPubMed
Borrathybay, E, Sawada, T, Kataoka, Y, Ohtsu, N, Takagi, M, Nakamura, S and Kawamoto, E (2003). A 39 kDa protein mediates adhesion of avian Pasteurella multocida to chicken embryo fibroblast cells. Veterinary Microbiology 97: 229243.CrossRefGoogle ScholarPubMed
Bosch, M, Tarrago, R, Garrido, ME, Campoy, S, Fernandez de Henestrosa, AR, Perez de Rozas, AM, Badiola, I and Barbe, J (2001). Expression of the Pasteurella multocida ompH gene is negatively regulated by the Fur protein. FEMS Microbiology Letters 203: 3540.CrossRefGoogle ScholarPubMed
Bosch, M, Garrido, E, Llagostera, M, Perez de Rozas, AM, Badiola, I and Barbe, J (2002a). Pasteurella multocida exbB, exbD and tonB genes are physically linked but independently transcribed. FEMS Microbiology Letters 210: 201208.CrossRefGoogle ScholarPubMed
Bosch, M, Garrido, ME, Llagostera, M, Perez De Rozas, AM, Badiola, I and Barbe, J (2002b). Characterization of the Pasteurella multocida hgbA gene encoding a hemoglobin-binding protein. Infection and Immunity 70: 59555964.CrossRefGoogle ScholarPubMed
Bosch, M, Garrido, ME, Perez de Rozas, AM, Badiola, I, Barbe, J and Llagostera, M (2004). Pasteurella multocida contains multiple immunogenic haemin- and haemoglobin-binding proteins. Veterinary Microbiology 99: 103112.CrossRefGoogle ScholarPubMed
Boyce, JD and Adler, B (2000). The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Infection and Immunity 68: 34633468.CrossRefGoogle ScholarPubMed
Boyce, JD and Adler, B (2006). How does Pasteurella multocida respond to the host environment? Current Opinion in Microbiology 9: 117122.CrossRefGoogle Scholar
Boyce, JD, Chung, JY and Adler, B (2000a). Pasteurella multocida capsule: composition, function and genetics. Journal of Biotechnology 83: 153160.CrossRefGoogle ScholarPubMed
Boyce, JD, Chung, JY and Adler, B (2000b). Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Veterinary Microbiology 72: 121134.CrossRefGoogle ScholarPubMed
Boyce, JD, Cullen, PA, Nguyen, V, Wilkie, I and Adler, B (2006). Analysis of the Pasteurella multocida outer membrane sub-proteome and its response to the in vivo environment of the natural host. Proteomics 6: 870880.CrossRefGoogle Scholar
Bresser, P, Virkola, R, Jonsson-Vihanne, M, Jansen, H, Korhonen, T and van Alphen, L (2000). Interaction of clinical isolates of nonencapsulated Haemophilus influenzae with mammalian extracellular matrix proteins. FEMS Immunology and Medical Microbiology 28: 129132.CrossRefGoogle ScholarPubMed
Bryant, LK, Perino, LJ, Griffin, D, Doster, AR and Wittum, TE (1999). A method for recording pulmonary lesions of beef calves at slaughter, and the association of lesions with average daily gain. Bovine Practitioners 33: 163173.CrossRefGoogle Scholar
Bryson, D, McFerran, J, Ball, H and Neill, S (1978). Observations on outbreaks of respiratory disease in housed calves (1) epidemiological, clinical and microbiological findings. Veterinary Record 103: 485489.CrossRefGoogle ScholarPubMed
Capitini, CM, Herrero, IA, Patel, R, Ishitani, MB and Boyce, TG (2002). Wound infection with Neissseria weaveri and a novel subspecies of Pasteurella multocida in a child who sustained a tiger bite. Clinical Infectious Diseases 34: E74E76.CrossRefGoogle Scholar
Carter, GR (1952). The type specific capsular antigen of Pasteurella multocida. Canadian Journal of Medical Sciences 30: 4853.CrossRefGoogle ScholarPubMed
Carter, GR (1955). Studies on Pasteurella multocida. I. A hemagglutination test for the identification of serological types. American Journal of Veterinary Research 16: 481484.Google Scholar
Carter, GR and Chengappa, MM (1980). Hyaluronidase production by type B Pasteurella multocida from cases of hemorrhagic septicemia. Journal of Clinical Microbiology 11: 9496.CrossRefGoogle ScholarPubMed
Carter, GR and de Alwis, MCL (1989). Hemorrhagic septicemia. In: Adlam, C and Rutter, JM (eds) Pasteurella and Pasteurellosis. London: Academic Press, pp. 132160.Google Scholar
Catry, B, Chiers, K, Schwarz, S, Kehrenberg, C, Decostere, A and de Kruif, A (2005). Fatal peritonitis caused by Pasteurella multocida capsular type F in calves. Journal of Clinical Microbiology 43: 14801483.CrossRefGoogle ScholarPubMed
Catry, B, Decostere, A, Schwarz, S, Kehrenberg, C, de Kruif, A and Haesebrouck, F (2006). Detection of tetracycline-resistant and susceptible Pasteurellaceae in the nasopharynx of loose group-housed calves. Veterinary Research Communications 30: 707715.CrossRefGoogle ScholarPubMed
Chaslus-Dancla, E, Lesage-Decauses, MC, Leroy-Setrin, S, Martel, JL, Coudert, P and Lafont, JP (1996). Validation of random amplified polymorphic DNA assays by ribotyping as tools for epidemiological surveys of Pasteurella from animals. Veterinary Microbiology 52: 91102.CrossRefGoogle ScholarPubMed
Chaudhuri, P and Goswami, PP (2001). Cloning of 87 kDa outer membrane protein gene of Pasteurella multocida P52. Research in Veterinary Science 70: 255256.CrossRefGoogle ScholarPubMed
Chen, L, Paulsen, DB, Scruggs, DW, Banes, MM, Reeks, BY and Lawrence, ML (2003). Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. Microbiology 149: 22832290.CrossRefGoogle ScholarPubMed
Chengappa, MM, McLaughlin, BG, Kadel, WL, Maddux, RL and Greer, SC (1989). Efficacy of a live Pasteurella multocida vaccine for the prevention of experimentally induced bovine pneumonic pasteurellosis. Veterinary Microbiology 21: 147154.CrossRefGoogle ScholarPubMed
Chevalier, G, Duclohier, H, Thomas, D, Shechter, E and Wroblewski, H (1993). Purification and characterization of protein H, the major porin of Pasteurella multocida. Journal of Bacteriology 175: 266276.CrossRefGoogle ScholarPubMed
Choi-Kim, K, Maheswaran, SK, Felice, LJ and Molitor, TW (1991). Relationship between the iron regulated outer membrane proteins and the outer membrane proteins of in vivo grown Pasteurella multocida. Veterinary Microbiology 28: 7592.CrossRefGoogle ScholarPubMed
Chung, JY, Zhang, Y and Adler, B (1998). The capsule biosynthetic locus of Pasteurella multocida A:1. FEMS Microbiology Letters 166: 289296.CrossRefGoogle ScholarPubMed
Chung, JY, Wilkie, I, Boyce, J, Townsend, K, Frost, A, Ghoddusi, M and Adler, B (2001). Role of capsule in the pathogenesis of fowl cholera caused by Pasteurella multocida serogroup A. Infection and Immunity 69: 24872492.CrossRefGoogle ScholarPubMed
Cole, S, Guiney, D and Corbeil, L (1993). Molecular analysis of a gene encoding a serum-resistance-associated 76 kDa surface antigen of Haemophilus somnus. Journal of General Microbiology 139: 21352143.CrossRefGoogle ScholarPubMed
Collins, FM (1977). Mechanisms of acquired resistance to Pasteurella multocida infection: a review. The Cornell Veterinarian 67: 103138.Google ScholarPubMed
Confer, AW (1993). Immunogens of Pasteurella. Veterinary Microbiology 37: 353368.CrossRefGoogle ScholarPubMed
Confer, AW, Nutt, SH, Dabo, SM, Panciera, RJ and Murphy, GL (1996). Antibody responses of cattle to outer membrane proteins of Pasteurella multocida A:3. American Journal of Veterinary Research 57: 14531457.CrossRefGoogle ScholarPubMed
Cox, AJ, Hunt, ML, Boyce, JD and Adler, B (2003). Functional characterization of HgbB, a new hemoglobin binding protein of Pasteurella multocida. Microbial Pathogenesis 34: 287296.CrossRefGoogle ScholarPubMed
Curtis, C, Erb, H and White, M (1988a). Descriptive epidemiology of calfhood morbidity and mortality in New-York Holstein herds. Preventive Veterinary Medicine 5: 293307.CrossRefGoogle Scholar
Curtis, C, Scarlett, JM, Erb, HN and White, ME (1988b). Path model of individual-calf risk-factors for calfhood morbidity and mortality in New-York Holstein herds. Preventive Veterinary Medicine 6: 4362.CrossRefGoogle Scholar
Cusack, PM (2004). Effect of mass medication with antibiotics at feedlot entry on the health and growth rate of cattle destined for the Australian domestic market. Australian Veterinary Journal 82: 154156.CrossRefGoogle ScholarPubMed
Dabo, SM, Confer, AW and Murphy, GL (1997). Outer membrane proteins of bovine Pasteurella multocida serogroup A isolates. Veterinary Microbiology 54: 167183.CrossRefGoogle ScholarPubMed
Dabo, SM, Debey, B, Montelongo, M and Confer, A (1999a). Genomic DNA restriction site heterogeneity in bovine Pasteurella multocida serogroup A isolates detected with an rRNA probe. Journal of Medical Microbiology 48: 279286.CrossRefGoogle ScholarPubMed
Dabo, SM, Confer, AW, Montelongo, M and Lu, YS (1999b). Characterization of rabbit Pasteurella multocida isolates by use of whole-cell, outer-membrane, and polymerase chain reaction typing. Laboratory Animal Science 49: 551559.Google ScholarPubMed
Dabo, SM, Confer, AW and Lu, YS (2000). Single primer polymerase chain reaction fingerprinting for Pasteurella multocida isolates from laboratory rabbits. American Journal of Veterinary Research 61: 305309.CrossRefGoogle ScholarPubMed
Dabo, SM, Confer, AW and Quijano-Blas, RA (2003). Molecular and immunological characterization of Pasteurella multocida serotype A:3 OmpA: evidence of its role in P. multocida interaction with extracellular matrix molecules. Microbial Pathogenesis 35: 147157.CrossRefGoogle Scholar
Dabo, SM, Confer, AW and Hartson, SD (2005). Adherence of Pasteurella multocida to fibronectin. Veterinary Microbiology 110: 265275.CrossRefGoogle ScholarPubMed
Datta, DB, Arden, B and Henning, U (1977). Major protein of Escherichia coli outer cell envelope membrane as bacteriophage receptors. Journal of Bacteriology 131: 821829.CrossRefGoogle ScholarPubMed
Davies, RL, MacCorquodale, R, Baillie, S and Caffrey, B (2003a). Characterization and comparison of Pasteurella multocida strains associated with porcine pneumonia and atrophic rhinitis. Journal of Medical Microbiology 52: 5967.CrossRefGoogle ScholarPubMed
Davies, RL, MacCorquodale, R and Caffrey, B (2003b). Diversity of avian Pasteurella multocida strains based on capsular PCR typing and variation of the OmpA and OmpH outer membrane proteins. Veterinary Microbiology 91: 169182.CrossRefGoogle ScholarPubMed
Davies, RL (2004). Genetic diversity among Pasteurella multocida strains of avian, bovine, ovine and porcine origin from England and Wales by comparative sequence analysis of the 16S rRNA gene. Microbiology 150: 41994210.CrossRefGoogle ScholarPubMed
Davies, RL and Lee, I (2004). Sequence diversity and molecular evolution of the heat-modifiable outer membrane protein gene (OmpA) of Mannheimia (Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. Journal of Bacteriology 186: 57415752.CrossRefGoogle ScholarPubMed
Davies, RL, MacCorquodale, R and Reilly, S (2004). Characterisation of bovine strains of Pasteurella multocida and comparison with isolates of avian, ovine and porcine origin. Veterinary Microbiology 99: 145158.CrossRefGoogle ScholarPubMed
DeAngelis, PL (1996). Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry 35: 97689771.CrossRefGoogle ScholarPubMed
DeAngelis, PL and Padgett-McCue, AJ (2000). Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. The Journal of Biological Chemistry 275: 2412424129.CrossRefGoogle ScholarPubMed
DeAngelis, PL and White, CL (2002). Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. The Journal of Biological Chemistry 277: 72097213.CrossRefGoogle ScholarPubMed
DeAngelis, PL, Jing, W, Drake, RR and Achyuthan, AM (1998). Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. The Journal of Biological Chemistry 273: 84548458.CrossRefGoogle ScholarPubMed
DeAngelis, PL, Gunay, NS, Toida, T, Mao, WJ and Linhardt, RJ (2002). Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydrate Research 337: 15471552.CrossRefGoogle Scholar
Deich, RA, Anilionis, A, Fulginiti, J, Metcalf, BJ, Quataert, S, Quinn-Dey, T, Zlotnick, GW and Green, BA (1990). Antigenic conservation of the 15,000-dalton outer membrane lipoprotein PCP of Haemophilus influenzae and biologic activity of anti-PCP antisera. Infection and Immunity 58: 33883393.CrossRefGoogle ScholarPubMed
DeRosa, DC, Mechor, GD, Staats, JJ, Chengappa, MM and Shryock, TR (2000). Comparison of Pasteurella spp. simultaneously isolated from nasal and transtracheal swabs from cattle with clinical signs of bovine respiratory disease. Journal of Clinical Microbiology 38: 327332.CrossRefGoogle ScholarPubMed
Doughty, SW, Ruffolo, CG and Adler, B (2000). The type 4 fimbrial subunit gene of Pasteurella multocida. Veterinary Microbiology 72: 7990.CrossRefGoogle ScholarPubMed
Dowling, A, Hodgson, JC, Schock, A, Donachie, W, Eckersall, PD and McKendrick, IJ (2002). Experimental induction of pneumonic pasteurellosis in calves by intratracheal infection with Pasteurella multocida biotype A:3. Research in Veterinary Science 73: 3744.CrossRefGoogle ScholarPubMed
Dowling, A, Hodgson, JC, Dagleish, MP, Eckersall, PD and Sales, J (2004). Pathophysiological and immune cell responses in calves prior to and following lung challenge with formalin-killed Pasteurella multocida biotype A:3 and protection studies involving subsequent homologous live challenge. Veterinary Immunology and Immunopathology 100: 197207.CrossRefGoogle ScholarPubMed
Duensing, TD and van Putten, JP (1997). Vitronectin mediates internalization of Neissseria gonorrhoeae by Chinese hamster ovary cells. Infection and Immunity 65: 964970.CrossRefGoogle Scholar
Duensing, TD and van Putten, JP (1998). Vitronectin binds to the gonococcal adhesin OpaA through a glycosaminoglycan molecular bridge. The Biochemical Journal 334: 133139.CrossRefGoogle Scholar
Duensing, TD, Wing, JS and van Putten, JP (1999). Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infection and Immunity 67: 44634468.CrossRefGoogle ScholarPubMed
Dugal, F, Belanger, M and Jacques, M (1992). Enhanced adherence of Pasteurella multocida to porcine tracheal rings preinfected with Bordetella bronchiseptica. Canadian Journal of Veterinary Research 56: 260264.Google ScholarPubMed
Dungworth, DC (1985). The respiratory system. In: Jubb, KVF, Kennedy, PC and Palmer, N (eds) Pathology of Domestic Animals, Orlando, FL: Academic Press, pp. 448489.Google Scholar
Dziva, F, Christensen, H, Olsen, JE and Mohan, K (2001). Random amplification of polymorphic DNA and phenotypic typing of Zimbabwean isolates of Pasteurella multocida. Veterinary Microbiology 82: 361372.CrossRefGoogle ScholarPubMed
Dziva, F, Christensen, H, van Leengoed, LA, Mohan, K and Olsen, JE (2004). Differentiation of Pasteurella multocida isolates from cases of atrophic rhinitis in pigs from Zimbabwe by RAPD and ribotyping. Veterinary Microbiology 102: 117122.CrossRefGoogle ScholarPubMed
Esslinger, J, Seleim, RS and Blobel, H (1993). Hyaluronic-acid mediated adhesion of Pasteurella multocida isolated from domestic and feral ruminants. In: Pattern, BE, Spencer, TL, Johnson, RB, Hoffmann, D and Lehane, L (eds) Pasteurellosis in Production Animals, Brisbane, QLD: ACIAR Proceedings, pp. 4043.Google Scholar
Esslinger, J, Seleim, RS, Herrmann, G and Blobel, H (1994). Adhesion of Pasteurella multocida to HeLa cells and to macrophages of different animal species. Revue de Medicine Veterinaire 145: 4953.Google Scholar
Ewers, C, Lubke-Becker, A, Bethe, A, Kiebling, S, Filter, M and Wieler, LH (2006). Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Veterinary Microbiology 114: 304317.CrossRefGoogle ScholarPubMed
Fajfar-Whetstone, CJ, Coleman, L, Biggs, DR and Fox, BC (1995). Pasteurella multocida septicemia and subsequent Pasteurella dagmatis septicemia in a diabetic patient. Journal of Clinical Microbiology 33: 202204.CrossRefGoogle ScholarPubMed
Fischer, H, Yamamoto, M, Akira, S, Beutler, B and Svanborg, C (2006). Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. European Journal of Immunology 36: 267277.CrossRefGoogle ScholarPubMed
Frank, GH (1989). Pasteurellosis of cattle. In: Adlam, C and Rutter, JM (eds) Pasteurella and Pasteurellosis, London: Academic Press, pp. 197222.Google Scholar
Frank, GH, Briggs, RE, Loan, RW, Purdy, CW and Zehr, ES (2000). Effects of tilmicosin treatment on Pasteurella haemolytica organisms in nasal secretion specimens of calves with respiratory tract disease. American Journal of Veterinary Research 61: 525529.CrossRefGoogle ScholarPubMed
Frank, GH, Briggs, RE, Duff, GC, Loan, RW and Purdy, CW (2002). Effects of vaccination prior to transit and administration of florfenicol at time of arrival in a feedlot on the health of transported calves and detection of Mannheimia haemolytica in nasal secretions. American Journal of Veterinary Research 63: 251256.CrossRefGoogle Scholar
Fuller, TE, Kennedy, MJ and Lowery, DE (2000). Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microbial Pathogenesis 29: 2538.CrossRefGoogle Scholar
Fulton, RW, Purdy, CW, Confer, AW, Saliki, JT, Loan, RW, Briggs, RE and Burge, LJ (2000). Bovine viral diarrhea viral infections in feeder calves with respiratory disease: interactions with Pasteurella spp., parainfluenza-3 virus, and bovine respiratory syncytial virus. Canadian Journal of Veterinary Research 64: 151159.Google ScholarPubMed
Fulton, RW, Cook, BJ, Step, DL, Confer, AW, Saliki, JT, Payton, ME, Burge, LJ, Welsh, RD and Blood, KS (2002). Evaluation of health status of calves and the impact on feedlot performance: assessment of a retained ownership program for postweaning calves. Canadian Journal of Veterinary Research 66: 173180.Google ScholarPubMed
Fulton, RW, Briggs, RE, Payton, ME, Confer, AW, Saliki, JT, Ridpath, JF, Burge, LJ and Duff, GC (2004). Maternally derived humoral immunity to bovine viral diarrhea virus (BVDV) 1a, BVDV1b, BVDV2, bovine Herpesvirus-1, parainfluenza-3 virus bovine respiratory syncytial virus, Mannheimia haemolytica and Pasteurella multocida in beef calves, antibody decline by half-life studies and effect on response to vaccination. Vaccine 22: 643649.CrossRefGoogle ScholarPubMed
Gagea, MI, Bateman, KG, van Dreumel, T, McEwen, BJ, Carman, S, Archambault, M, Shanahan, RA and Caswell, JL (2006). Diseases and pathogens associated with mortality in Ontario beef feedlots. Journal of Veterinary Diagnostic Investigation 18: 1828.CrossRefGoogle ScholarPubMed
Galdiero, M, Folgore, A, Nuzzo, I and Galdiero, E (2000). Neutrophil adhesion and transmigration through bovine endothelial cells in vitro by protein H and LPS of Pasteurella multocida. Immunobiology 202: 226238.CrossRefGoogle ScholarPubMed
Ganfield, DJ, Rebers, PA and Heddleston, KL (1976). Immunogenic and toxic properties of a purified lipopolysaccharide–protein complex from Pasteurella multocida. Infection and Immunity 14: 990999.CrossRefGoogle ScholarPubMed
Garrido, ME, Bosch, M, Medina, R, Bigas, A, Llagostera, M, Perez De Rozas, AM, Badiola, I and Barbe, J (2003). fur-independent regulation of the Pasteurella multocida hbpA gene encoding a haemin-binding protein. Microbiology 149: 22732281.CrossRefGoogle ScholarPubMed
Gatto, NT, Dabo, SM, Hancock, RE and Confer, AW (2002). Characterization of, and immune responses of mice to, the purified OmpA-equivalent outer membrane protein of Pasteurella multocida serotype A:3 (Omp28). Veterinary Microbiology 87: 221235.CrossRefGoogle Scholar
Glorioso, JC, Jones, GW, Rush, HG, Pentler, LJ, Darif, CA and Coward, JE (1982). Adhesion of type A Pasteurella multocida to rabbit pharyngeal cells and its possible role in rabbit respiratory tract infections. Infection and Immunity 35: 11031109.CrossRefGoogle ScholarPubMed
Gresham, CN, Confer, AW, Bush, LJ and Rummage, JA (1984). Serum and colostrum antibody to Pasteurella species in dairy cattle. American Journal of Veterinary Research 45: 22272230.Google ScholarPubMed
Griffin, D, Perino, L and Wittum, TE (1994). Feedlot respiratory disease: cost, value of preventives and intervention. In: Proceedings of the 27th Annual Convention of the American Association of Bovine Practitioners, Pittsburgh, PA, pp. 157160.Google Scholar
Gummow, B and Mapham, PH (2000). A stochastic partial-budget analysis of an experimental Pasteurella haemolytica feedlot vaccine trial. Preventive Veterinary Medicine 43: 2942.CrossRefGoogle ScholarPubMed
Gutierrez-Pabello, JA, Smith, JE and Suarez-Guemes, F (1995). Determination of the hyaluronic acid presence in the capsular material of Pasteurella multocida type A and D isolated from porcine lungs. In: Donachie, W, Lainson, FA and Hodgson, JC (eds) Haemophilus, Actinobacillus, and Pasteurella. New York: Plenum Press, p. T18.Google Scholar
Hajishengallis, G, Martin, M, Sojar, HT, Sharma, A, Schifferle, RE, DeNardin, E, Russell, MW and Genco, RJ (2002). Dependence of bacterial protein adhesins on Toll-like receptors for proinflammatory cytokine induction. Clinical and Diagnostic Laboratory Immunology 9: 403411.Google ScholarPubMed
Hallstrom, T, Trajkovska, E, Forsgren, A and Riesbeck, K (2006). Haemophilus influenzae surface fibrils contribute to serum resistance by interacting with vitronectin. The Journal of Immunology 177: 430436.CrossRefGoogle ScholarPubMed
Hansen, LM and Hirsh, DC (1989). Serum resistance is correlated with encapsulation of avian strains of Pasteurella multocida. Veterinary Microbiology 21: 177184.CrossRefGoogle ScholarPubMed
Haritani, M, Narita, M, Murata, H, Hashimoto, K and Takizawa, T (1989). Immunoperoxidase evaluation of pneumonic lesions induced by Pasteurella multocida in calves. American Journal of Veterinary Research 50: 21622167.Google ScholarPubMed
Haritani, M, Nakazawa, M, Hashimoto, K, Narita, M, Tagawa, Y and Nakagawa, M (1990). Immunoperoxidase evaluation of the relationship between necrotic lesions and causative bacteria in lungs of calves with naturally acquired pneumonia. American Journal of Veterinary Research 51: 19751979.CrossRefGoogle ScholarPubMed
Harmon, BG, Glisson, JR, Latimer, KS, Steffens, WL and Nunnally, JC (1991). Resistance of Pasteurella multocida A:3,4 to phagocytosis by turkey macrophages and heterophils. American Journal of Veterinary Research 52: 15071511.CrossRefGoogle ScholarPubMed
Harper, M, Cox, AD, St Michael, F, Wilkie, IW, Boyce, JD and Adler, B (2004). A heptosyltransferase mutant of Pasteurella multocida produces a truncated lipopolysaccharide structure and is attenuated in virulence. Infection and Immunity 72: 34363443.CrossRefGoogle ScholarPubMed
Harper, M, Boyce, JD, and Adler, B (2006). Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters 265: 110.CrossRefGoogle ScholarPubMed
Harper, M, Boyce, JD, Cox, AD, St Michael, F, Wilkie, IW, Blackall, PJ and Adler, B (2007). Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases. Infection and Immunity 75: 38853893.CrossRefGoogle Scholar
Heddleston, KL and Rebers, PA (1972). Fowl cholera: cross-immunity induced in turkeys with formalin-killed in-vivo-propagated Pasteurella. Avian Diseases 16: 578586.CrossRefGoogle ScholarPubMed
Heddleston, KL, Gallagher, JE and Rebers, PA (1972). Fowl cholera: gel diffusion precipitin test for serotyping Pasteurella multocida from avian species. Avian Diseases 16: 925936.CrossRefGoogle ScholarPubMed
Heddleston, KL and Rebers, PA (1975). Properties of free endotoxin from Pasteurella multocida. American Journal of Veterinary Research 36: 573574.Google ScholarPubMed
Heithoff, DM, Sinsheimer, RL, Low, DA and Mahan, MJ (1999). An essential role for DNA adenine methylation in bacterial virulence. Science 284: 967970.CrossRefGoogle ScholarPubMed
Heusipp, G, Falker, S and Schmidt, MA (2007). DNA adenine methylation and bacterial pathogenesis. International Journal of Medical Microbiology 297: 17.CrossRefGoogle ScholarPubMed
Hirose, K, Kobayashi, H, Ito, N, Kawasaki, Y, Zako, M, Kotani, K, Ogawa, H and Sato, H (2003). Isolation of Mycoplasmas from nasal swabs of calves affected with respiratory diseases and antimicrobial susceptibility of their isolates. Journal of Veterinary Medicine. Series B 50: 347351.CrossRefGoogle ScholarPubMed
Hunt, Gerardo S, Citron, DM, Claros, MC, Fernandez, HT and Goldstein, EJ (2001). Pasteurella multocida subsp. multocida and P. multocida subsp. septica differentiation by PCR fingerprinting and alpha-glucosidase activity. Journal of Clinical Microbiology 39: 25582564.CrossRefGoogle Scholar
Hunt, ML, Adler, B and Townsend, KM (2000). The molecular biology of Pasteurella multocida. Veterinary Microbiology 72: 325.CrossRefGoogle ScholarPubMed
Hunt, ML, Boucher, DJ, Boyce, JD and Adler, B (2001). In vivo-expressed genes of Pasteurella multocida. Infection and Immunity 69: 30043012.CrossRefGoogle ScholarPubMed
Ifeanyi, FI and Bailie, WE (1992). Passive protection of mice with antiserum to neuraminidase from Pasteurella multocida serotype A:3. Veterinary Research Communications 16: 97105.CrossRefGoogle ScholarPubMed
Inatsuka, CS, Julio, SM and Cotter, PA (2005). Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proceedings of the National Academy of Sciences of the United States of America 102: 1857818583.CrossRefGoogle Scholar
Iovane, G, Pagnini, P, Galdiero, M, Cipollaro de l'Ero, G, Vitiello, M, D'Isanto, M and Marcatili, A (1998). Role of Pasteurella multocida porin on cytokine expression and release by murine splenocytes. Veterinary Immunology and Immunopathology 66: 391404.CrossRefGoogle ScholarPubMed
Irwin, MR, McConnell, S, Coleman, JD and Wilcox, GE (1979). Bovine respiratory disease complex: a comparison of potential predisposing and etiologic factors in Australia and the United States. Journal of the American Veterinary Medical Association 175: 10951099.Google ScholarPubMed
Isaacson, RE and Trigo, E (1995). Pili of Pasteurella multocida of porcine origin. FEMS Microbiology Letters 132: 247251.CrossRefGoogle ScholarPubMed
Ishiguro, K, Kitajima, T, Kubota, S, Amimoto, K, Oda, K, Fukuyama, S and Shimizu, Y (2005). Experimental infection of calves with Pasteurella multocida serovar A:3 isolated in Japan. Journal of Veterinary Medical Science 67: 817819.CrossRefGoogle ScholarPubMed
Jensen, R, Pierson, RE, Braddy, PM, Saari, DA, Lauerman, LH, England, JJ, Horton, DP and McChesney, AE (1976). Shipping fever pneumonia in yearling feedlot cattle. Journal of the American Veterinary Medical Association 169: 500506.Google ScholarPubMed
Jacques, M, Parent, N and Foiry, B (1988). Adherence of Bordetella bronchiseptica and Pasteurella multocida to porcine nasal and tracheal epithelial cells. Canadian Journal of Veterinary Research 52: 283285.Google ScholarPubMed
Jacques, M, Kobisch, M, Belanger, M and Dugal, F (1993). Virulence of capsulated and noncapsulated isolates of Pasteurella multocida and their adherence to porcine respiratory tract cells and mucus. Infection and Immunity 61: 47854792.CrossRefGoogle Scholar
Jacques, M, Belanger, M, Diarra, MS, Dargis, M and Malouin, F (1994). Modulation of Pasteurella multocida capsular polysaccharide during growth under iron-restricted conditions and in vivo. Microbiology 140: 263270.CrossRefGoogle ScholarPubMed
Jericho, KW and Carter, GR (1985). Pneumonia in calves produced with aerosols of Pasteurella multocida alone and in combination with bovine herpesvirus 1. Canadian Journal of Comparative Medicine 49: 138144.Google ScholarPubMed
Joh, D, Wann, ER, Kreikemeyer, B, Speziale, P and Hook, M (1999). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix of Biology 18: 211223.CrossRefGoogle ScholarPubMed
Kachlany, SC, Planet, PJ, Bhattacharjee, MK, Kollia, E, DeSalle, R, Fine, DH and Figurski, DH (2000). Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. Journal of Bacteriology 182: 61696176.CrossRefGoogle ScholarPubMed
Kachlany, SC, Planet, PJ, DeSalle, R, Fine, DH and Figurski, DH (2001). Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Trends in Microbiology 9: 429437.CrossRefGoogle ScholarPubMed
Kadel, WL, Chengappa, MM and Herren, CE (1985). Field-trial evaluation of a Pasteurella vaccine in preconditioned and nonpreconditioned lightweight calves. American Journal of Veterinary Research 46: 19441948.Google ScholarPubMed
Kehrenberg, C, Catry, B, Haesebrouck, F, de Kruif, A and Schwarz, S (2005). tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. Journal of Antimicrobial Chemotherapy 56: 403406.CrossRefGoogle ScholarPubMed
Kelly, AP and Janzen, ED (1986). A review of morbidity and mortality rates and disease occurrence in North American feedlot cattle. Canadian Veterinary Journal 27: 496500.Google ScholarPubMed
Kucera, CJ, Wong, JC and Eis, RL (1981). Development of a chemically altered Pasteurella multocida vaccinal strain. American Journal of Veterinary Research 42: 13891394.Google ScholarPubMed
Kumar, AA, Shivachandra, SB, Biswas, A, Singh, VP and Srivastava, SK (2004). Prevalent serotypes of Pasteurella multocida isolated from different animal and avian species in India. Veterinary Research Communications 28: 657667.CrossRefGoogle ScholarPubMed
Letellier, A, Dubreuil, D, Roy, G, Fairbrother, JM and Jacques, M (1991). Determination of affinity of Pasteurella multocida isolates for porcine respiratory tract mucus, and partial characterization of the receptors. American Journal of Veterinary Research 52: 3439.CrossRefGoogle ScholarPubMed
Lillie, LE (1974). The bovine respiratory disease complex. Canadian Veterinary Journal 15: 233242.Google ScholarPubMed
Lo, M, Boyce, JD, Wilkie, IW and Adler, B (2004). Characterization of two lipoproteins in Pasteurella multocida. Microbes and Infection 6: 5867.CrossRefGoogle ScholarPubMed
Loneragan, G, Dargatz, D, Morley, P and Smith, M (2001). Trends in mortality ratios among cattle in US feedlots. Journal of the American Veterinary Medical Association 219: 11221127.CrossRefGoogle ScholarPubMed
Lopez, A (2007). Respiratory system. In: McGarvin, MD and Zachary, JF (eds) Pathological Basis of Veterinary Disease, St. Louis, MO: Mosby Elsevier, pp. 522523.Google Scholar
Lorenz, E, Chemotti, DC, Vandal, K and Tessier, PA (2004). Toll-like receptor 2 represses nonpilus adhesin-induced signaling in acute infections with the Pseudomonas aeruginosa pilA mutant. Infection and Immunity 72: 45614569.CrossRefGoogle ScholarPubMed
Lu, YS, Aguila, HN, Lai, WC and Pakes, SP (1991). Antibodies to outer membrane proteins but not to lipopolysaccharide inhibit pulmonary proliferation of Pasteurella multocida in mice. Infection and Immunity 59: 14701475.CrossRefGoogle ScholarPubMed
Lugtenberg, B, van Boxtel, R and de Jong, M (1984). Atrophic rhinitis in swine: correlation of Pasteurella multocida pathogenicity with membrane protein and lipopolysaccharide patterns. Infection and Immunity 46: 4854.CrossRefGoogle ScholarPubMed
Lugtenberg, B, van Boxtel, R, Evenberg, D, de Jong, M, Storm, P and Frik, J (1986). Biochemical and immunological characterization of cell surface proteins of Pasteurella multocida strains causing atrophic rhinitis in swine. Infection and Immunity 52: 175182.CrossRefGoogle ScholarPubMed
Luo, Y, Glisson, JR, Jackwood, MW, Hancock, RE, Bains, M, Cheng, IH and Wang, C (1997). Cloning and characterization of the major outer membrane protein gene (ompH) of Pasteurella multocida X-73. Journal of Bacteriology 179: 78567864.CrossRefGoogle ScholarPubMed
Luo, Y, Zeng, Q, Glisson, JR, Jackwood, MW, Cheng, IH and Wang, C (1999). Sequence analysis of Pasteurella multocida major outer membrane protein (OmpH) and application of synthetic peptides in vaccination of chickens against homologous strain challenge. Vaccine 17: 821831.CrossRefGoogle ScholarPubMed
Macartney, JE, Bateman, KG and Ribble, CS (2003). Health performance of feeder calves sold at conventional auctions versus special auctions of vaccinated or conditioned calves in Ontario. Journal of the American Veterinary Medical Association 223: 677683.CrossRefGoogle ScholarPubMed
MacVean, DW, Franzen, DK, Keefe, TJ and Bennett, BW (1986). Airborne particle concentration and meteorologic conditions associated with pneumonia incidence in feedlot cattle. American Journal of Veterinary Research 47: 26762682.Google ScholarPubMed
Maheswaran, SK, Thumbikat, P and Dileepan, T (2002). Current knowledge on pathogenesis of lung injury caused by Mannheimia haemolytica and Pasteurella multocida in the bovine. In XXII World Buiatrics Congress, Hannover, Germany, pp. 160167.Google Scholar
Marandi, M and Mittal, KR (1996). Characterization of an outer membrane protein of Pasteurella multocida belonging to the OmpA family. Veterinary Microbiology 53: 303314.CrossRefGoogle Scholar
Martin, SW and Meek, AH (1986). A path model of factors influencing morbidity and mortality in Ontario feedlot calves. Canadian Journal of Veterinary Research 50: 1522.Google ScholarPubMed
Maslog, FS, Motobu, M, Hayashida, N, Yoshihara, K, Morozumi, T, Matsumura, M and Hirota, Y (1999). Effects of the lipopolysaccharide–protein complex and crude capsular antigens of Pasteurella multocida serotype A on antibody responses and delayed type hypersensitivity responses in the chicken. Journal of Veterinary Medical Science 61: 565567.CrossRefGoogle ScholarPubMed
Mathy, NL, Mathy, JP, Lee, RP, Walker, J, Lofthouse, S and Meeusen, EN (2002). Pathological and immunological changes after challenge infection with Pasteurella multocida in naive and immunized calves. Veterinary Immunology and Immunopathology 85: 179188.CrossRefGoogle ScholarPubMed
Matsuoka, T, Gale, C, Ose, EE and Berkman, RN (1966). Calfhood immunization against an experimental Parainfluenza and Pasteurella challenge. Canadian Journal of Comparative Medicine and Veternary Science 30: 228232.Google ScholarPubMed
MayB,J B,J, Zhang, Q, Li, LL, Paustian, ML, Whittam, TS and Kapur, V (2001). Complete genomic sequence of Pasteurella multocida, Pm70. Proceedings of the National Academy of Sciences of the United States of America 98: 34603465.CrossRefGoogle ScholarPubMed
Mehling, JS, Lavender, H and Clegg, S (2007). A Dam methylation mutant of Klebsiella pneumoniae is partially attenuated. FEMS Microbiology Letters 268: 187193.CrossRefGoogle ScholarPubMed
Mitchison, M, Wei, L, Kwang, J, Wilkie, I and Adler, B (2000). Overexpression and immunogenicity of the Oma87 outer membrane protein of Pasteurella multocida. Veterinary Microbiology 72: 9196.CrossRefGoogle ScholarPubMed
Mizan, S, Henk, A, Stallings, A, Maier, M and Lee, MD (2000). Cloning and characterization of sialidases with 2–6′ and 2–3′ sialyl lactose specificity from Pasteurella multocida. Journal of Bacteriology 182: 68746883.CrossRefGoogle ScholarPubMed
Molinari, G, Talay, SR, Valentin-Weigand, P, Rohde, M and Chhatwal, GS (1997). The fibronectin-binding protein of Streptococcus pyogenes, Sfbl, is involved in the internalization of group A streptococci by epithelial cells. Infection and Immunity 65: 13571363.CrossRefGoogle Scholar
Morris, C, Yip, CM, Tsui, IS, Wong, DK and Hackett, J (2003). The shufflon of Salmonella enterica serovar Typhi regulates type IVB pilus-mediated bacterial self-association. Infection and Immunity 71: 11411146.CrossRefGoogle ScholarPubMed
Mosier, DA, Confer, AW and Panciera, RJ (1989). The evolution of vaccines for bovine pneumonic pasteurellosis. Research in Veterinary Science 47: 110.CrossRefGoogle ScholarPubMed
Mosier, DA (1997). Bacterial pneumonia. Veterinary Clinics of North America: Food Animal Practice 13: 483493.Google ScholarPubMed
Muller, HE and Krasemann, C (1974). The virulence of Pasteurella multocida strains and their neuraminidase production (author's transl.). Zentralblatt Für Bakteriologie [Orig A] 229: 391400.Google ScholarPubMed
Muniandy, N and Mukkur, TKS (1993). Protective potential of purified lipopolysaccharide viru conjugated oligosaccharide of Pasteurella multocida type B in mice. In: Pasteurellosis in Production Animals: ACIAR Proccedings, Brisbane, pp. 149155.Google Scholar
Mutters, R, Ihm, P, Pohl, S, Frederiksen, W and Mannheim, W (1985). Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposal of new species, Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. International Journal of Systemic Bacteriology 35: 309312.CrossRefGoogle Scholar
Negrete-Abascal, E, Tenorio, VR and de la Garza, M (1999). Secretion of proteases from Pasteurella multocida isolates. Current Microbiology 38: 6467.CrossRefGoogle ScholarPubMed
Nikunen, S, Hartel, H, Orro, T, Neuvonen, E, Tanskanen, R, Kivela, S-L, Sankari, S, Aho, P, Pyrala, S, Saloniemi, H and Soveri, T (2007). Association of bovine respiratory disease with clinical status and acute phase proteins in calves. Comparative Immunology, Microbiology and Infectious Diseases 30: 143151.CrossRefGoogle ScholarPubMed
Ogawa, T, Asai, Y, Hashimoto, M and Uchida, H (2002). Bacterial fimbriae activate human peripheral blood monocytes utilizing TLR2, CD14 and CD11a/CD18 as cellular receptors. European Journal of Immunology 32: 25432550.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Ogunnariwo, JA, Alcantara, J and Schryvers, AB (1991). Evidence for non-siderophore-mediated acquisition of transferrin-bound iron by Pasteurella multocida. Microbial Pathogenesis 11: 4756.CrossRefGoogle ScholarPubMed
Ogunnariwo, JA and Schryvers, AB (2001). Characterization of a novel transferrin receptor in bovine strains of Pasteurella multocida. Journal of Bacteriology 183: 890896.CrossRefGoogle ScholarPubMed
Olive, DM and Bean, P (1999). Principles and applications of methods for DNA-based typing of microbial organisms. Journal of Clinical Microbiology 37: 16611669.CrossRefGoogle Scholar
Panciera, RJ, Corstvet, RE, Confer, AW and Gresham, CN (1984). Bovine pneumonic pasteurellosis: effect of vaccination with live Pasteurella species. American Journal of Veterinary Research 45: 25382542.Google ScholarPubMed
Patti, JM, AllenB,L B,L, McGavin, MJ and Hook, M (1994). MSCRAMM-mediated adherence of microorganisms to host tissues. Annual Review of Microbiology 48: 585617.CrossRefGoogle ScholarPubMed
Paustian, ML, MayB,J B,J and Kapur, V (2001). Pasteurella multocida gene expression in response to iron limitation. Infection and Immunity 69: 41094115.CrossRefGoogle ScholarPubMed
Paustian, ML, MayB,J B,J and Kapur, V (2002). Transcriptional response of Pasteurella multocida to nutrient limitation. Journal of Bacteriology 184: 37343739.CrossRefGoogle ScholarPubMed
Perino, LJ and Hunsaker, BD (1997). A review of bovine respiratory disease vaccine field efficacy. Bovine Practitioners 31: 5966.CrossRefGoogle Scholar
Phillips, M and Rimler, RB (1984). Protection of chickens by ribosomal vaccines from Pasteurella multocida: dependence on homologous lipopolysaccharide. American Journal of Veterinary Research 45: 17851789.Google ScholarPubMed
Prado, ME, Dabo, SM and Confer, AW (2005). Immunogenicity of iron-regulated outer membrane proteins of Pasteurella multocida A:3 in cattle: molecular characterization of the immunodominant heme acquisition system receptor (HasR) protein. Veterinary Microbiology 105: 269280.CrossRefGoogle ScholarPubMed
Prado, ME, Prado, TM, Payton, M and Confer, AW (2006). Maternally and naturally acquired antibodies to Mannheimia haemolytica and Pasteurella multocida in beef calves. Veterinary Immunology and Immunopathology 111: 301307.CrossRefGoogle ScholarPubMed
Prasadarao, N (2002). Identification of Escherichia coli membrane protein A receptor on human brain microvascular endothelial cells. Infection and Immunity 70: 45564563.CrossRefGoogle ScholarPubMed
Prasadarao, N, Wass, C, Weiser, J, Stins, M, Huang, S and Kim, K (1996). Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infection and Immunity 64: 146153.CrossRefGoogle ScholarPubMed
Pratt, J, Cooley, JD, Purdy, CW, and Straus, DC (2000). Lipase activity from strains of Pasteurella multocida. Current Microbiology 40: 306309.CrossRefGoogle ScholarPubMed
Pruimboom, IM, Rimler, RB, Ackermann, MR and Brogden, KA (1996). Capsular hyaluronic acid-mediated adhesion of Pasteurella multocida to turkey air sac macrophages. Avian Diseases 40: 887893.CrossRefGoogle ScholarPubMed
Pruimboom, IM, Rimler, RB and Ackermann, MR (1999). Enhanced adhesion of Pasteurella multocida to cultured turkey peripheral blood monocytes. Infection and Immunity 67: 12921296.CrossRefGoogle ScholarPubMed
Purdy, CW, Raleigh, RH, Collins, JK, Watts, JL and Straus, DC (1997). Serotyping and enzyme characterization of Pasteurella haemolytica and Pasteurella multocida isolates recovered from pneumonic lungs of stressed feeder calves. Current Microbiology 34: 244249.CrossRefGoogle ScholarPubMed
Raetz, CR and Whitfield, C (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry 71: 635700.CrossRefGoogle ScholarPubMed
Ramdani, and Adler, B (1991). Opsonic monoclonal antibodies against lipopolysaccharide (LPS) antigens of Pasteurella multocida and the role of LPS in immunity. Veterinary Microbiology 26: 335347.Google ScholarPubMed
Rebers, PA, Jensen, AE and Laird, GA (1988). Expression of pili and capsule by the avian strain P-1059 of Pasteurella multocida. Avian Diseases 32: 313318.CrossRefGoogle ScholarPubMed
Rhoades, KR and Rimler, RB (1989). Fowl Cholera. London: Academic Press.Google Scholar
Ribble, CS, Meek, AH, Janzen, ED, Guichon, PT and Jim, GK (1995a). Effect of time of year, weather, and the pattern of auction market sales on fatal fibrinous pneumonia (shipping fever) in calves in a large feedlot in Alberta (1985–1988. Canadian Journal of Veterinary Research 59: 167172.Google Scholar
Ribble, CS, Meek, AH, Jim, GK and Guichon, PT (1995b). The pattern of fatal fibrinous pneumonia (shipping fever) affecting calves in a large feedlot in Alberta (1985–1988. Canadian Veterinary Journal 36: 753757.Google Scholar
Rimler, RB (1990). Comparisons of Pasteurella multocida lipopolysaccharides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine relationship between group B and E hemorrhagic septicemia strains and serologically related group A strains. Journal of Clinical Microbiology 28: 654659.CrossRefGoogle Scholar
Rimler, RB (1994). Partial purification of cross-protection factor(s) from Pasteurella multocida. Avian Diseases 38: 778789.CrossRefGoogle ScholarPubMed
Rimler, RB and Rhoades, KR (1989). Pasteurella multocida. In: Adlam, C and Rutter, JM (eds) Pasteurella and Pasteurellosis. London: Academic Press, pp. 3773.Google Scholar
Rimler, RB and Rhoades, KR (1994). Hyaluronidase and chondroitinase activity of Pasteurella multocida serotype B:2 involved in hemorrhagic septicaemia. Veterinary Record 134: 6768.CrossRefGoogle ScholarPubMed
Roehrig, SC, Tran, HQ, Spehr, V, Gunkel, N, Selzer, PM and Ullrich, HJ (2007). The response of Mannheimia haemolytica to iron limitation: implications for the acquisition of iron in the bovine lung. Veterinary Microbiology 121: 316329.CrossRefGoogle ScholarPubMed
Ruffolo, CG, Tennent, JM, Michalski, WP and Adler, B (1997). Identification purification, and characterization of the type 4 fimbriae of Pasteurella multocida. Infection and Immunity 65: 339343.CrossRefGoogle ScholarPubMed
Ryu, HI and Kim, CJ (2000). Immunologic reactivity of a lipopolysaccharide–protein complex of type A Pasteurella multocida in mice. Journal of Veterinary Science 1: 8795.CrossRefGoogle ScholarPubMed
Sachdeva, G, Kumar, K, Jain, P and Ramachandran, S (2005). SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21: 483491.CrossRefGoogle Scholar
Schweizer, M and Henning, U (1997). Action of a major outer cell envelope membrane protein in conjugation of Escherichia coli K-12. Journal of Bacteriology 129: 16511652.CrossRefGoogle Scholar
Shewen, PE and Conlon, JAR (1993). Pasteurella. In: Gyles, CL and Thoen, CO (eds) Pathogenesis of Bacterial Infections in Animals. Ames, IA: Iowa State University Press, pp. 216225.Google Scholar
Shivachandra, SB, Kumar, AA, Amaranath, J, Joseph, S, Srivastava, SK and Chaudhuri, P (2005). Cloning and characterization of tbpA gene encoding transferrin-binding protein (TbpA) from Pasteurella multocida serogroup B:2 (strain P52). Veterinary Research Communications 29: 537542.CrossRefGoogle ScholarPubMed
Siju, J, Kumar, AA, Shivachandra, SB, Chaudhuri, P, Srivastava, SK and Singh, VP (2007). Cloning and characterization of type 4 fimbrial gene (ptfA) of Pasteurella multocida serogroup B:2 (strain P(52)). Veterinary Research Communications 31: 397404.CrossRefGoogle Scholar
Singer, RS, Case, JT, Carpenter, TE, Walker, RL and Hirsh, DC (1998). Assessment of spatial and temporal clustering of ampicillin- and tetracycline-resistant strains of Pasteurella multocida and P. haemolytica isolated from cattle in California. Journal of the American Veterinary Medical Association 212: 10011005.CrossRefGoogle ScholarPubMed
Sivula, N, Ames, T and Marsh, W (1996a). Management practices and risk factors for morbidity and mortality in Minnesota dairy heifer calves. Preventive Veterinary Medicine 27: 173182.CrossRefGoogle Scholar
Sivula, N, Ames, T, Marsh, W and Werdin, R (1996b). Descriptive epidemiology of morbidity and mortality in Minnesota dairy heifer calves. Preventive Veterinary Medicine 27: 155171.CrossRefGoogle Scholar
Snipes, KP and Hirsh, DC (1986). Association of complement sensitivity with virulence of Pasteurella multocida isolated from turkeys. Avian Diseases 30: 500504.CrossRefGoogle ScholarPubMed
Snipes, KP, Ghazikhanian, GY and Hirsh, DC (1987). Fate of Pasteurella multocida in the blood vascular system of turkeys following intravenous inoculation: comparison of an encapsulated, virulent strain with its avirulent, acapsular variant. Avian Diseases 31: 254259.CrossRefGoogle ScholarPubMed
Snowder, GD, Van Vleck, LD, Cundiff, LV and Bennett, GL (2006). Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors. Journal of Animal Science 84: 19992008.CrossRefGoogle ScholarPubMed
St Michael, F, Li, J and Cox, AD (2005a). Structural analysis of the core oligosaccharide from Pasteurell multocida strain X73. Carbohydrate Research 340: 12531257.CrossRefGoogle ScholarPubMed
St Michael, F, Li, J, Vinogradov, E, Larocque, S, Harper, M and Cox, AD (2005b). Structural analysis of the lipopolysaccharide of Pasteurella multocida strain VP161: identification of both Kdo-P and Kdo-Kdo species in the lipopolysaccharide. Carbohydrate Research 340: 5968.CrossRefGoogle ScholarPubMed
St Michael, F, Vinogradov, E, Li, J and Cox, AD (2005c). Structural analysis of the lipopolysaccharide from Pasteurella multocida genome strain Pm70 and identification of the putative lipopolysaccharide glycosyltransferases. Glycobiology 15: 323333.CrossRefGoogle ScholarPubMed
Steenbergen, SM, Lichtensteiger, CA, Caughlan, R, Garfinkle, J, Fuller, TE and Vimr, ER (2005). Sialic acid metabolism and systemic pasteurellosis. Infection and Immunity 73: 12841294.CrossRefGoogle ScholarPubMed
Step, DL, Confer, A, Kirkpatrick, J, Richards, J and Fulton, RW (2005). Respiratory tract infections in dairy calves from birth to breeding age: detection by laboratory isolations and seroconversions. Bovine Practitioners 39: 4453.CrossRefGoogle Scholar
Storz, J, Lin, X, Purdy, CW, Chouljenko, VN, Kousoulas, KG, Enright, FM, Gilmore, WC, Briggs, RE and Loan, RW (2000a). Coronavirus and Pasteurella infections in bovine shipping fever pneumonia and Evans’ criteria for causation. Journal of Clinical Microbiology 38: 32913298.CrossRefGoogle Scholar
Storz, J, Purdy, CW, Lin, X, Burrell, M, Truax, RE, Briggs, RE, Frank, GH and LoanRW, RW, (2000b). Isolation of respiratory bovine coronavirus, other cytocidal viruses, and Pasteurella spp from cattle involved in two natural outbreaks of shipping fever. Journal of the American Veterinary Medical Association 216: 15991604.CrossRefGoogle ScholarPubMed
Straus, DC, Cooley, JD, and Purdy, CW (1996). In vivo production of neuraminidase by Pasteurella multocida A:3 in goats after transthoracic challenge. Current Microbiology 33: 266269.CrossRefGoogle ScholarPubMed
Sutherland, AD, Davies, RC and Murray, J (1993). An experimental anti-idiotype vaccine mimicking lipopolysaccharide gives protection against Pasteurella multocida type A infection in mice. FEMS Immunology and Medical Microbiology 7: 105110.CrossRefGoogle ScholarPubMed
Svensson, C, Hultgren, J and Oltenacu, P (2006). Morbidity in 3–7 month-old dairy calves in south-western Sweden, and risk factors for diarrhea and respiratory disease. Preventive Veterinary Medicine 74: 162179.CrossRefGoogle Scholar
Tabatabai, LB and Zehr, ES (2004). Identification of five outer membrane-associated proteins among cross-protective factor proteins of Pasteurella multocida. Infection and Immunity 72: 11951198.CrossRefGoogle ScholarPubMed
Tam, CK, Hackett, J and Morris, C (2004). Salmonella enterica serovar Paratyphi C carries an inactive shufflon. Infection and Immunity 72: 2228.CrossRefGoogle ScholarPubMed
Tatum, FM, Yersin, AG and Briggs, RE (2005). Construction and virulence of a Pasteurella multocida fhaB2 mutant in turkeys. Microbial Pathogenesis 39: 917.CrossRefGoogle ScholarPubMed
Tegtmeier, C, Uttenthal, A, Friis, NF, Jensen, NE and Jensen, HE (1999). Pathological and microbiological studies on pneumonic lungs from Danish calves. Zentralblatt für Veterinärmedizin B 46: 693700.Google ScholarPubMed
Townsend, KM, Boyce, JD, Chung, JY, Frost, AJ and Adler, B (2001). Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. Journal of Clinical Microbiology 39: 924929.CrossRefGoogle ScholarPubMed
Truscott, WM and Hirsh, DC (1988). Demonstration of an outer membrane protein with antiphagocytic activity from Pasteurella multocida of avian origin. Infection and Immunity 56: 15381544.CrossRefGoogle ScholarPubMed
Tsuji, M and Matsumoto, M (1988). Evaluation of relationship among three purified antigens from Pasteurella multocida strain P-1059 and of their protective capacities in turkeys. American Journal of Veterinary Research 49: 15161521.Google ScholarPubMed
Tsuji, M and Matsumoto, M (1989). Pathogenesis of fowl cholera: influence of encapsulation on the fate of Pasteurella multocida after intravenous inoculation into turkeys. Avian Diseases 33: 238247.CrossRefGoogle ScholarPubMed
Van Donkersgoed, J (1992). Meta-analysis of field trials of antimicrobial mass medication for prophylaxis of bovine respiratory disease in feedlot cattle. Canadian Veterinary Journal 33: 786795.Google ScholarPubMed
Van Donkersgoed, J, Ribble, CS, Boyer, LG and Townsend, HG (1993). Epidemiological study of enzootic pneumonia in dairy calves in Saskatchewan. Canadian Journal of Veterinary Research 57: 247254.Google ScholarPubMed
Vasfi Marandi, M and Mittal, KR (1997). Role of outer membrane protein H (OmpH)- and OmpA-specific monoclonal antibodies from hybridoma tumors in protection of mice against Pasteurella multocida. Infection and Immunity 65: 45024508.CrossRefGoogle ScholarPubMed
Virtala, A-M, Mechor, GD, Grohn, YT, Erb, HN and Dubovi, EJ (1996). Epidemiologic and pathologic characteristics of respiratory tract disease in dairy heifers during the first three months of life. Journal of the American Veterinary Medical Association 208: 20352042.CrossRefGoogle ScholarPubMed
Virtala, A-MK, Grohn, YT, Mechor, GD and Erb, HN (1999). The effect of maternally derived immunoglobulin G on the risk of respiratory disease in heifers during the first 3 months of life. Preventive Veterinary Medicine 39: 2537.CrossRefGoogle ScholarPubMed
Virtala, A-MK, Gröhn, YT, Mechor, GD, Erb, HN and Dubovi, EJ (2000). Association of seroconversion with isolation of agents in transtrachael wash fluids collected from pneumonic calves less than three months of age. Bovine Practitioners 34: 7780.CrossRefGoogle Scholar
Waltner-Toews, D, Martin, S and Meek, A (1986). Dairy calf management, morbidity and mortality in Ontario Holstein herds. II. Age and seasonal patterns. Preventive Veterinary Medicine 4.Google Scholar
Wang, C and Glisson, JR (1994a). Passive cross-protection provided by antisera directed against in-vivo-expressed antigens of Pasteurella multocida. Avian Diseases 38: 506514.CrossRefGoogle ScholarPubMed
Wang, C and Glisson, JR (1994b). Identification of common antigens of serotype 1 and serotype 3 Pasteurella multocida in poultry expressed in vivo. Avian Diseases 38: 334340.CrossRefGoogle ScholarPubMed
Ward, CK, Lumbley, SR, Latimer, JL, Cope, LD and Hansen, EJ (1998). Haemophilus ducreyi secretes a filamentous hemagglutinin-like protein [In Process Citation]. Journal of Bacteriology 180: 60136022.CrossRefGoogle ScholarPubMed
Watt, JM, Swiatlo, E, Wade, MM and Champlin, FR (2003). Regulation of capsule biosynthesis in serotype A strains of Pasteurella multocida. FEMS Microbiology Letters 225: 914.CrossRefGoogle ScholarPubMed
Watts, JL, JrYancey, RJ, Salmon, SA and Case, CA (1994). A 4-year survey of antimicrobial susceptibility trends for isolates from cattle with bovine respiratory disease in North America. Journal of Clinical Microbiology 32: 725731.CrossRefGoogle ScholarPubMed
Weber, DJ, Wolfson, JS, Swartz, MN and Hooper, DC (1984). Pasteurella multocida infections. Report of 34 cases and review of the literature. Medicine (Baltimore) 63: 133154.CrossRefGoogle ScholarPubMed
Weiser, J and Gotschlich, E (1991). Outer membrane protein A (ompA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infection and Immunity 59: 22522258.CrossRefGoogle ScholarPubMed
Welsh, RD, Dye, LB, Payton, ME and Confer, AW (2004). Isolation and antimicrobial susceptibilities of bacterial pathogens from bovine pneumonia: 1994–2002. Journal of Veterinary Diagnostics Investigation 16: 426431.CrossRefGoogle ScholarPubMed
Westerlund, B and Korhonen, T (1993). Bacterial proteins binding to the mammalian extracellular matrix. Molecular Microbiology 9: 687694.CrossRefGoogle Scholar
White, DJ, Jolley, WL, Purdy, CW, and Straus, DC (1995). Extracellular neuraminidase production by a Pasteurella multocida A:3 strain associated with bovine pneumonia. Infection and Immunity 63: 17031709.CrossRefGoogle ScholarPubMed
Wijewardana, TG, Wilson, CF, Gilmour, NJ and Poxton, IR (1990). Production of mouse monoclonal antibodies to Pasteurella multocida type A and the immunological properties of a protective anti-lipopolysaccharide antibody. Journal of Medical Microbiology 33: 217222.CrossRefGoogle ScholarPubMed
Wilson, MA, Rimler, RB and Hoffman, LJ (1992). Comparison of DNA fingerprints and somatic serotypes of serogroup B and E Pasteurella multocida isolates. Journal of Clinical Microbiology 30: 15181524.CrossRefGoogle Scholar
Wilson, SH, Church, TL and Acres, SD (1985). The influence of feedlot management on an outbreak of bovine respiratory disease. Canadian Veterinary Journal 26: 335341.Google Scholar
Wittum, TE, Woollen, NE, Perino, LJ and Littledike, ET (1996). Relationships among treatment for respiratory tract disease, pulmonary lesions evident at slaughter, and rate of weight gain in feedlot cattle. Journal of the American Veterinary Medical Association 209: 814818.CrossRefGoogle ScholarPubMed
Zucker, B, Kruger, M and Horsch, F (1996). Differentiation of Pasteurella multocida subspecies multocida isolates from the respiratory system of pigs by using polymerase chain reaction fingerprinting technique. Zentralblatt für Veterinärmedizin [B] 43: 585591.Google ScholarPubMed