Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-14T21:21:12.429Z Has data issue: false hasContentIssue false

Comparison of fresh and ensiled white and red clover added to ryegrass on energy and protein utilization of lactating cows

Published online by Cambridge University Press:  09 March 2007

H. A. van Dorland
Affiliation:
ETH Zurich, Institute of Animal Science, ETH Centre/LFW, CH-8092 Zurich, Switzerland
H.-R. Wettstein
Affiliation:
ETH Zurich, Institute of Animal Science, ETH Centre/LFW, CH-8092 Zurich, Switzerland
H. Leuenberger
Affiliation:
ETH Zurich, Institute of Animal Science, ETH Centre/LFW, CH-8092 Zurich, Switzerland
M. Kreuzer*
Affiliation:
ETH Zurich, Institute of Animal Science, ETH Centre/LFW, CH-8092 Zurich, Switzerland
*
*Corresponding author. E-mail: michael.kreuzer@inw.agrl.ethz.ch
Get access

Abstract

Two respiratory chamber experiments were conducted with dairy cows to compare metabolizable energy and protein utilization when feeding white or red clover with ryegrass. In experiment 1, fresh ryegrass was mixed with fresh white (WF) or red clover (RF) (60/40, on dry matter (DM) basis). Experiment 2 involved similar mixed diets in ensiled form (WS and RS, respectively), and two ryegrass silage diets, without (GS) or with supplementary maize gluten (GS+). Barley was supplemented according to requirements for milk production. Voluntary forage DM intake remained unaffected in experiment 1 and was higher (P<0·01) in experiment 2 for WS than for GS and GS+(128 v. 98 and 106 g/kg M0·75). Within experiments, no treatment effects occurred for apparent nutrient digestibilities, milk yield, and composition. Protein utilization (milk-N/N-intake) was numerically lower on all clover-based diets (0·24 to 0·25) versus GS (0·29). With added maize gluten (GS+), protein utilization decreased to 0·23, indicating that ryegrass silage (plus barley) alone provided sufficient metabolizable protein. Consequently, higher (P<0·01) urinary energy losses occurred in GS+ compared with GS, despite similar metabolizable energy intakes, and a trend for the highest plasma urea levels was found for GS+ cows (7·59 mmol/l; P<0·1). Overall, this study illustrates that the white and red clovers investigated were equivalent in energy and protein supply, also in comparison to the ryegrass. It remains open whether these forage legumes, when supplemented to a moderate-protein ryegrass, would have contributed to metabolizable protein supply or would have merely increased metabolic nitrogen load.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abberton, M. T. and Marshall, A. H. 2005. Progress in breeding perennial clovers for temperate agriculture. Journal of Agricultural Science 143: 117135.CrossRefGoogle Scholar
Accorsi, P. A., Govoni, N., Gaiani, R., Pezzi, C., Seren, E. and Tamanini, C. 2005. Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows. Reproduction of Domesticated Animals 40: 217223.CrossRefGoogle ScholarPubMed
Agricultural and Food Research Council 1993. Energy and protein requirements of ruminants. CAB International, Wallingford, UK.Google Scholar
Bertilsson, J. and Murphy, M. 2003. Effects of feeding clover silages on feed intake, milk production and digestion in dairy cows. Grass and Forage Science 58: 309322.CrossRefGoogle Scholar
Broderick, G. A. and Clayton, M. K. 1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. Journal of Dairy Science 80: 29642971.CrossRefGoogle ScholarPubMed
Broderick, G. A., Walgenbach, R. P. and Maignan, S. 2000. Performance of lactating dairy cows fed alfalfa or red clover silage as the sole forage. Journal of Dairy Science 83: 15431551.CrossRefGoogle ScholarPubMed
Broderick, G. A., Walgenbach, R. P. and Maignan, S. 2001. Production of lactating dairy cows fed alfalfa or red clover silage at equal dry matter or crude protein contents in the diet. Journal of Dairy Science 84: 17281737.CrossRefGoogle ScholarPubMed
Brouwer, E. 1965. Report of subcommittee on constants and factors. In Energy metabolism of farm animals (ed. Blaxter, K. L. third symposium on energy metabolism. EAAP publication no. 11, pp.441443. Academic Press, London, UK.Google Scholar
Cammell, S. B., Thomson, D. J., Beever, D. E., Haines, M. J., Dhanoa, M. S. and Spooner, M. C. 1986. The efficiency of energy utilisation in growing cattle consuming fresh perennial ryegrass (Lolium perenne cv. Melle) or white clover (Trifolium repens cv. Blanca). British Journal of Nutrition 55: 669680.CrossRefGoogle ScholarPubMed
Charmley, E. 2001. Towards improved silage quality – a review. Canadian Journal of Animal Science 81: 157168.CrossRefGoogle Scholar
Chwalibog, A., Jensen, K. and Thorbeck, G. 1996. Oxidation of nutrients in bull calves treated with β-adrenergic agonists. Archives of Animal Nutrition 49: 255261.Google ScholarPubMed
Dewhurst, R. J., Evans, R. T., Scollan, N. D., Moorby, J. M., Merry, R. J. and Wilkins, R. J. 2003a. Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function. Journal of Dairy Science 86: 26122621.CrossRefGoogle ScholarPubMed
Dewhurst, R. J., Fisher, W. J., Tweed, J.-K. S., Wilkins, R.J. 2003b. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. Journal of Dairy Science 86: 25982611.CrossRefGoogle ScholarPubMed
Fernandez, J. M., Croom, W. J., Tate, L. P. and Johnson, A. D. 1990. Subclinical ammonia toxicity in steers: effects on hepatic and portal-drained visceral flux of metabolites and regulatory hormones. Journal of Animal Science 68: 17261742.CrossRefGoogle ScholarPubMed
Frame, J., Charlton, J. F.L. and Laidlaw, A. S. 1998. Temperate forage legumes. CAB International, Wallingford, UK.Google Scholar
Harris, S. L., Auldist, M. J., Clark, D. A. and Jansen, E. B.L. 1998. Effects of white clover content in the diet on herbage intake, milk production and milk composition of New Zealand dairy cows housed indoors. Journal of Dairy Research 65: 389400.CrossRefGoogle ScholarPubMed
Hindrichsen, I. K., Wettstein, H.-R., Machmüller, A., Bach Knudsen, K. E., Madsen, J. and Kreuzer, M. 2006. Digestive and metabolic utilisation of dairy cows supplemented with concentrates characterised by different carbohydrates. Animal Feed Science and Technology 126: 4361.CrossRefGoogle Scholar
Hoffmann, L. and Klein, M. 1980. Die Abhängigkeit der Harnergergie vom Kohlenstoff- und Stickstoffgehalt im Harn bei Rindern, Schafen, Schweinen und Ratten. Archiv fu˙r Tierernaehrung 30: 743750.CrossRefGoogle Scholar
Jones, B. A. 1995. Screening legume forages for soluble phenols, polyphenol oxidase and extract browning. Journal of the Science of Food and Agriculture 67: 109112.CrossRefGoogle Scholar
Kauppinen, K. 1984. ALAT, AP, ASAT, GGT, OCT activities and urea and total bilirubin concentrations in plasma of normal and ketotic dairy cows. Zentralblatt fu˙r Veterinaermedizin, A31: 567576.CrossRefGoogle Scholar
Leroy, J. L.M. R., Vanholder, T., Delanghe, J. R., Opsomer, G., Van Soom, A., Bols, P. E.J. and De Kruif, A. 2004. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Animal Reproduction Science 80: 201211.CrossRefGoogle ScholarPubMed
Lobley, G. E. and Milano, G. D. 1997. Regulation of hepatic nitrogen metabolism in ruminants. Proceedings of the Nutritional Society 56: 547563.CrossRefGoogle ScholarPubMed
McMurray, C. H., Blanchflower, W. J. and Rice, D. A. 1984. Automated kinetic method for D -3-hydroxybutyrate in plasma or serum. Clinical Chemistry 30: 421425.CrossRefGoogle ScholarPubMed
Naumann, K. and Bassler, R. 1997. Die chemische Untersuchung von Futtermitteln. Methodenbuch vol. 3. VdLUFA-Verlag, Darmstadt, Germany.Google Scholar
Rochon, J., Doyle, C. J., Greef, J. M., Hopkins, A., Molle, G., Sitzia, M., Scholefield, D. and Smith, C. J. 2004. Grazing legumes in Europe: a review of their status, management, benefits, research needs and future prospects. Grass and Forage Science 59: 197214.CrossRefGoogle Scholar
Sjaunja, L. O., Baevre, L., Junkkarinen, L., Pedersen, J. and Setala, J. 1991. A Nordic proposal for an energy corrected milk (ECM) formula. In Performance recording of animals: state of the art 1990 (ed. Gaillon, P., Chabert, Y.), EAAP publication no. 50, pp.156157. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.Google Scholar
Station Federale de Recherches en Production Animále. 1999. Fuetterungsempfehlungen und Naehrwerttabellen für Wiederkaeuer [Feeding recommendations and nutrient tables for ruminants, fourth edition.] Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland.Google Scholar
Statistical Analysis Systems Institute. (19992001). SAS/STAT user's guide: statistics, version 8·2. Statistical Analysis Systems Institute Inc, Cary, NC.Google Scholar
Steinshamn, H., Garmo, T., Thuen, E., Brenoe, U. T. and Gronmyr, F. 2002. Nitrogen utilisation on pasture in organic milk production. Grassland Science in Europe 7: 734735.Google Scholar
Twigg, J. R. and Van Gils, L. G.M. 1988. Practical aspects of feeding protein to dairy cows. In Recent Developments in Ruminant Nutrition (ed. Haresign, W., Cole, D.J.A.), pp. 196212. Buttersworth, London, England.CrossRefGoogle Scholar
Valk, H. 1994. Effects of partial replacement of herbage by maize silage on N utilization and milk production of dairy cows. Livestock Production Science 40: 241250.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed
Varga, G. A., Tyrrell, H. F., Huntington, G. B., Waldo, D. R. and Glenn, B. P. 1990. Utilization of nitrogen and energy by Holstein steers fed formaldehyde- and formic acid-treated alfalfa or orchardgrass silage at two intakes. Journal of Animal Science 68: 37803791.CrossRefGoogle ScholarPubMed
Veenhuizen, J. J., Drackley, J. K., Richard, M. J., Sanderson, T. P., Miller, L. D. and Young, J. W. 1991. Metabolic changes in blood and liver during development and early treatment of experimental fatty liver and ketosis in cows. Journal of Dairy Science 74: 42384253.CrossRefGoogle ScholarPubMed
Yan, T., Gordon, F. J., Agnew, R. E., Porter, M. G. and Patterson, D. C. 1997. The metabolisable energy requirement for maintenance and the efficiency of utilisation of metabolisable energy for lactation by dairy cows offered grass silage-based diets. Livestock Production Science 51: 141150.CrossRefGoogle Scholar