Published online by Cambridge University Press: 02 September 2010
Rumen degradability of dry matter (DM), organic matter (OM), nitrogen (N), neutral-detergent fibre (NDF), hemicellulose, cellulose and lignin was evaluated with the in situ technique for maize silage and cocksfoot, timothy, fescue, lucerne and meadow hays. The degradability of each of the six forages was studied separately, each forage being used in turn as the main component of the diet offered to four fistulated cows. For each forage 300 g were mordanted with sodium dichromate and placed in the rumen when the same forage was studied. Faecal grab samples were collected to measure the forage transit time. Digestibility was evaluated using both lignin as an indicator and by an in vitro method.
Rumen outflow rate was higher for cocksfoot and lucerne hays than for maize silage and the meadow, timothy and fescue hays (P < 0·01). The effective degradabilities of DM and OM were higher in maize silage, fescue and lucerne than in cocksfoot, timothy or meadow hay (P < 0·01). Effective degradability of N was highest in lucerne and lowest in timothy and meadow hay (P < 0·01). The degradability of NDF, hemicellulose and cellulose for fescue was always the highest of the six forages (P < 0·01; P < 0·05; F < 0·01 respectively).
Rumen outflow rate was statistically correlated with the c value of DM (r = 0·47), N (r = 0·54), NDF (r = 0·43) and hemicellulose (r = 0·43). High correlations were observed between rate constants of degradation of NDF and hemicellulose, cellulose or lignin (0·93, 0·75 and 0·79 respectively). The regression between in vitro and lignin-derived digestibility was highly significant (P < 0·001, r2 = 0·902 residual s.e. 0·017). The multiple regression analysis between lignin-based digestibility and degradability coefficients, effective degradability and coefficients of faecal chromium excretion was highly significant (r = 0·748; residual s.e. = 0·03).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.