Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T10:39:49.669Z Has data issue: false hasContentIssue false

Haptoglobin serum concentration is a suitable biomarker to assess the efficacy of a feed additive in pigs

Published online by Cambridge University Press:  01 April 2010

Y. Saco
Affiliation:
Departament de Bioquímica i Biologia Molecular i Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
L. Fraile
Affiliation:
Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
M. Giménez
Affiliation:
Departament de Bioquímica i Biologia Molecular i Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
R. Pato
Affiliation:
Departament de Bioquímica i Biologia Molecular i Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
M. Montoya
Affiliation:
Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
A. Bassols*
Affiliation:
Departament de Bioquímica i Biologia Molecular i Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
*
Get access

Abstract

Levels of haptoglobin and Pig-major acute phase protein (MAP) were analysed in animals from a commercial herd receiving or not a diet enriched with an additive. The group receiving the additive exhibited a decrease in haptoglobin after 3 weeks, suggesting that a better health status has been established, together with an improvement in total body weight and average daily gain. In contrast, Pig-MAP does not significantly change under these conditions. Aujeszky live modified vaccination, which is compulsory in Spain, did cause a significant increment in haptoglobin serum concentration although it did not affect Pig-MAP. The response of acute phase proteins to vaccination was similar in both control and additive-treated groups. Interleukins (IL)-1β and IL-6 was below the detection limits in most of the animals. In conclusion, this study shows that haptoglobin serum concentration, but not Pig-MAP, is a good biomarker to monitorize production parameters and for monitoring Aujeszky modified live vaccine in pigs reared under standard commercial conditions.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Yolanda Saco and Lorenzo Fraile equally contributed to this paper.

References

Asai, T, Mor, M, Okada, M, Uruno, K, Yazawa, S, Shibata, I 1999. Elevated serum haptoglobin in pigs infected with porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology 70, 143148.CrossRefGoogle ScholarPubMed
Blecha, F 2001. Immunomodulators for prevention and treatment of infectious diseases in food-producing animals. The veterinary clinics of North America. Food Animal Practice 17, 621633.CrossRefGoogle Scholar
Carpintero, R, Alonso, C, Pineiro, M, Iturralde, M, Andres, M, Le Potier, MF, Madec, F, Alava, MA, Pineiro, A, Lampreave, F 2007. Pig major acute-phase protein and apolipoprotein A-I responses correlate with the clinical course of experimentally induced African swine fever and Aujeszky’s disease. Veterinary Research 38, 741753.CrossRefGoogle ScholarPubMed
Clapperton, M, Bishop, SC, Glass, EJ 2005. Innate immune traits differ between Meishan and Large White pigs. Veterinary Immunology and Immunopathology 104, 131144.CrossRefGoogle ScholarPubMed
Clapperton, M, Bishop, SC, Pineiro, M, Campbell, FM, Glass, EJ 2007. The association between plasma levels of acute phase proteins, haptoglobin, alpha-1 acid glycoprotein (AGP), Pig-MAP, transthyretin and serum amyloid A (SAA) in Large White and Meishan pigs. Veterinary Immunology and Immunopathology 119, 303309.CrossRefGoogle ScholarPubMed
CLSI 2005. EP15-A2: user verification of performance for precision and trueness.Google Scholar
Diaz, I, Darwich, L, Pappaterra, G, Pujols, J, Mateu, E 2005. Immune responses of pigs after experimental infection with a European strain of Porcine reproductive and respiratory syndrome virus. The Journal of General Virology 86, 19431951.CrossRefGoogle ScholarPubMed
Eckersall, PD, Duthie, S, Toussaint, MJ, Gruys, E, Heegaard, P, Alava, M, Lipperheide, C, Madec, F 1999. Standardization of diagnostic assays for animal acute phase proteins. Advances in Veterinary Medicine 41, 643655.CrossRefGoogle ScholarPubMed
Eckersall, PD, Gow, JW, McComb, C, Bradley, B, Rodgers, J, Murray, M, Kennedy, PG 2001. Cytokines and the acute phase response in post-treatment reactive encephalopathy of Trypanosoma brucei brucei infected mice. Parasitology International 50, 1526.CrossRefGoogle ScholarPubMed
Eurell, TE, Bane, DP, Hall, WF, Schaeffer, DJ 1992. Serum haptoglobin concentration as an indicator of weight gain in pigs. Canadian Journal of Veterinary Research 56, 69.Google ScholarPubMed
Fano, E, Pijoan, C, Dee, S 2007. Infection dynamics of porcine reproductive and respiratory syndrome virus in a continuous-flow population of pigs also infected with Mycoplasma hyopneumoniae. The Veterinary Record 161, 515520.CrossRefGoogle Scholar
Fraile, LJ, Crisci, E, Weenberg, J, Armadans, M, Mendoza, L, Ruiz, L, Bernaus, S, Montoya, M 2009. Effect of treatment with phytosterols in three herds with porcine respiratory disease complex. Journal of Swine Health and Production 17, 298307.Google Scholar
Gonzalez-Ramon, N, Alava, MA, Sarsa, JA, Pineiro, M, Escartin, A, Garcia-Gil, A, Lampreave, F, Pineiro, A 1995. The major acute phase serum protein in pigs is homologous to human plasma kallikrein sensitive PK-120. FEBS Letters 371, 227230.Google ScholarPubMed
Grellner, GF, Fangman, TJ, Carroll, JA, Wiedmeyer, CE 2002. Using serology in combination with acute phase proteins and cortisol to determine stress and immune function of early-weaned pigs. Journal of Swine Health and Production 10, 199204.Google Scholar
Gruys, E, Toussaint, MJ, Upragarin, N, Van, EA, Adewuyi, AA, Candiani, D, Nguyen, TK, Sabeckiene, J 2005. Acute phase reactants, challenge in the near future of animal production and veterinary medicine. Journal of Zhejiang University Science B 6, 941947.CrossRefGoogle ScholarPubMed
Hall, WF, Eurell, TE, Hansen, RD, Herr, LG 1992. Serum haptoglobin concentration in swine naturally or experimentally infected with Actinobacillus pleuropneumoniae. Journal of the American Veterinary Medical Association 201, 17301733.CrossRefGoogle ScholarPubMed
Hardy, G 2000. Nutraceuticals and functional foods: introduction and meaning. Nutrition 16, 688689.CrossRefGoogle ScholarPubMed
Heegaard, PM, Klausen, J, Nielsen, JP, Gonzalez-Ramon, N, Pineiro, M, Lampreave, F, Alava, MA 1998. The porcine acute phase response to infection with Actinobacillus pleuropneumoniae. Haptoglobin, C-reactive protein, major acute phase protein and serum amyloid A protein are sensitive indicators of infection. Comparative Biochemistry and Physiology 119, 365373.CrossRefGoogle ScholarPubMed
Hiss, S, Sauerwein, H 2003. Influence of dietary β-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. Journal of Animal Physiology and Animal Nutrition 87, 211.CrossRefGoogle ScholarPubMed
Hulten, C, Johansson, E, Fossum, C, Wallgren, P 2003. Interleukin 6, serum amyloid A and haptoglobin as markers of treatment efficacy in pigs experimentally infected with Actinobacillus pleuropneumoniae. Veterinary Microbiology 95, 7589.CrossRefGoogle ScholarPubMed
Kothalawala, H, Toussaint, MJ, Gruys, E 2006. An overview of swine influenza. Veterinary Quarterly 28, 4653.CrossRefGoogle ScholarPubMed
Marinkovic, S, Baumann, H 1990. Structure, hormonal regulation, and identification of the interleukin-6- and dexamethasone-responsive element of the rat haptoglobin gene. Molecular and Cellular Biology 10, 15731583.Google ScholarPubMed
Martin de la Fuente, AJ, Carpintero, R, Rodriguez Ferri, EF, Alava, MA, Lampreave, F, Gutierrez Martin, CB 2008. Acute-phase protein response in pigs experimentally infected with Haemophilus parasuis. Comparative Immunology, Microbiology and Infectious Diseases (in press, doi:10.1016/j.cimid.2008.11.001).Google ScholarPubMed
Murata, H, Shimada, N, Yoshioka, M 2004. Current research on acute phase proteins in veterinary diagnosis: an overview. Veterinary Journal 168, 2840.CrossRefGoogle ScholarPubMed
Parra, MD, Fuentes, P, Tecles, F, Martinez-Subiela, S, Martinez, JS, Munoz, A, Ceron, JJ 2006. Porcine acute phase protein concentrations in different diseases in field conditions. Journal of Veterinary Medicine B 53, 488493.CrossRefGoogle ScholarPubMed
Petersen, HH, Nielsen, JP, Heegaard, PM 2004. Application of acute phase protein measurements in veterinary clinical chemistry. Veterinary Research 35, 163187.CrossRefGoogle ScholarPubMed
Pineiro, C, Pineiro, M, Morales, J, Carpintero, R, Campbell, FM, Eckersall, PD, Toussaint, MJM, Alava, MA, Lampreave, F 2007a. Pig acute-phase protein levels after stress induced by changes in the pattern of food administration. Animal 1, 133139.CrossRefGoogle ScholarPubMed
Pineiro, M, Pineiro, C, Carpintero, R, Morales, J, Campbell, FM, Eckersall, PD, Toussaint, MJ, Lampreave, F 2007b. Characterisation of the pig acute phase protein response to road transport. Veterinary Journal 173, 669674.CrossRefGoogle ScholarPubMed
Saco, Y, Fraile, L, Giménez, M, Alegre, A, Lopez-Jimenez, R, Cortey, M, Segalés, J, Bassols, A. Serum acute phase proteins as biomarkers of pleuritis and cranio-ventral pulmonary consolidation in slaughter-aged pigs. Veterinary Journal (Submitted).Google Scholar
Segales, J, Pineiro, C, Lampreave, F, Nofrarias, M, Mateu, E, Calsamiglia, M, Andres, M, Morales, J, Pineiro, M, Domingo, M 2004. Haptoglobin and pig-major acute protein are increased in pigs with postweaning multisystemic wasting syndrome (PMWS). Veterinary Research 35, 275282.CrossRefGoogle ScholarPubMed
Shams, H 2005. Recent developments in veterinary vaccinology. Veterinary Journal 170, 289299.CrossRefGoogle ScholarPubMed
Sibila, M, Pieters, M, Molitor, T, Maes, D, Haesebrouck, F, Segales, J 2009. Current perspectives on the diagnosis and epidemiology of Mycoplasma hyopneumoniae infection. Veterinary Journal 181, 221231.CrossRefGoogle ScholarPubMed
Sorensen, NS, Tegtmeier, C, Andresen, LO, Pineiro, M, Toussaint, MJ, Campbell, FM, Lampreave, F, Heegaard, PM 2006. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis. Veterinary Immunology and Immunopathology 113, 157168.CrossRefGoogle ScholarPubMed
Stevenson, LS, McCullough, K, Vincent, I, Gilpin, DF, Summerfield, A, Nielsen, J, McNeilly, F, Adair, BM, Allan, GM 2006. Cytokine and C-reactive protein profiles induced by porcine circovirus type 2 experimental infection in 3-week-old piglets. Viral Immunology 19, 189195.CrossRefGoogle ScholarPubMed
Tecles, F, Fuentes, P, Martinez Subiela, S, Parra, MD, Munoz, A, Ceron, JJ 2007. Analytical validation of commercially available methods for acute phase proteins quantification in pigs. Research in Veterinary Science 83, 133139.CrossRefGoogle ScholarPubMed