Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-29T07:37:45.772Z Has data issue: false hasContentIssue false

Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach

Published online by Cambridge University Press:  17 May 2010

Anatoly Peretyatko*
Affiliation:
Plant Science and Nature Management, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Samuel Teissier
Affiliation:
Plant Science and Nature Management, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Sylvia De Backer
Affiliation:
Plant Science and Nature Management, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Ludwig Triest
Affiliation:
Plant Science and Nature Management, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
*
*Corresponding author: Anatoly.Peretyatko@vub.ac.be
Get access

Abstract

Blooms of toxic cyanobacteria became a common feature of temperate lakes and ponds owing to human induced eutrophication. Occurrence of cyanobacterial blooms in an urban context may pose serious health concerns. This necessitates the development of tools for assessment of the risk of noxious bloom occurrence. A five year study of 42 Brussels ponds showed that cyanobacteria have threshold rather than linear relationships with environmental variables controlling them. Hence, linear relationships have limited predictive capacity for cyanobacterial blooms. A probabilistic approach to prediction of bloom occurrence using environmental thresholds as conditions in conditional probability calculation proved to be more useful. It permitted the risk of cyanobacterial bloom occurrence to be quantified and thus the conditions and thence the ponds the most prone to cyanobacterial bloom development to be singled out. This approach can be applied for the assessment of the risk of cyanobacterial bloom occurrence in urban ponds and thus can facilitate monitoring planning, remediation efforts and setting restoration priorities.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A.A., 1998. Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecol. , 19, 331337.CrossRefGoogle Scholar
Benndorf, J., Boing, W., Koop, J. and Neubauer, I., 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshw. Biol. , 47, 22822295.CrossRefGoogle Scholar
Briand, J.F., Jacquet, S., Bernard, C. and Humbert, J.F., 2003. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res. , 34, 117.CrossRefGoogle ScholarPubMed
Brönmark, C. and Hansson, L.A., 2005. The biology of lakes and ponds , Oxford University Press, Oxford.Google Scholar
Carmichael, W.W., 2001. Human fatalities from cyanobacteria: chemical and bioloigical evidence for cyanotoxins. Environ. Health Perspect. , 109, 663668.CrossRefGoogle Scholar
Carmichael, W., 2008. A world overview – One hundred twenty seven years of research on toxic cyanobacteria – Where do we go from here? In: Hudnell, H.K. (ed.), Cyanobacterial harmful algal blooms – State of the science and research needs , Springer Science, 105120.CrossRef
Carpenter, S.R., Cole, J.J., Hodgson, J.R., Kitchell, J.F., Pace, M.L., Bade, D., Cottingham, K.L., Essington, T.E., Houser, J.N. and Schindler, D.E., 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol. Monogr. , 71, 163186.CrossRefGoogle Scholar
Christoffersen, K., Riemann, B., Klysner, A. and Sondergaard, M., 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol. Oceanogr. , 38, 561573.CrossRefGoogle Scholar
Cottenie, K., Nuytten, N., Michels, E. and De Meester, L., 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia , 442, 339350.CrossRefGoogle Scholar
DeMott, W.R., Gulati, R.D. and Van Donk, E., 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnol. Oceanogr. , 46, 20542060.CrossRefGoogle Scholar
Dokulil, M.T. and Teubner, K., 2000. Cyanobacterial dominance in lakes. Hydrobiologia , 438, 112.CrossRefGoogle Scholar
Downing, J.A., Watson, S.B. and McCauley, E., 2001. Predicting Cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. , 58, 19051908.CrossRefGoogle Scholar
Gliwicz, Z.M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia , 200, 8397.CrossRefGoogle Scholar
Gliwicz, Z.M. and Lampert, W., 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology , 71, 691702.CrossRefGoogle Scholar
Graham, L.E. and Wilcox, L.W., 2000. Algae, Prentice-Hall, Upper Saddle River.
Hasle, G.R., 1978. The inverted-microscope method. In: Sournia, A. (ed.), Phytoplankton manual , UNESCO, Paris, 8896.Google Scholar
Hudnell, K.H., 2008. Cyanobacterial Harmful Algal Blooms , Springer, New York. CrossRefGoogle ScholarPubMed
Huisman, J., Van Oostveen, P. and Weissing, F.J., 1999. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. , 154, 4668.CrossRefGoogle Scholar
Irfanullah, H.M. and Moss, B., 2005. A filamentous green algae-dominated temperate shallow lake: Variations on the theme of clearwater stable states? Arch. Hydrobiol. , 163, 2547.CrossRefGoogle Scholar
Jacquet, S., Briand, J.F., Leboulanger, C., Avois-Jacquet, C., Oberhaus, L., Tassin, B., Vinçon-Leite, B., Paolini, G., Druart, J.-C., Anneville, O. and Humbert, J.F., 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae , 4, 651672.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J.P., Søndergaard, M., Lauridsen, T., Pedersen, L.J. and Jensen, L., 1997. Top-down control in freshwater lakes: The role of nutrient state, submerged macrophytes and water depth. Hydrobiologia , 342, 151164.CrossRefGoogle Scholar
Jones, J.I., Young, J.O., Eaton, J.W. and Moss, B., 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J. Ecol. , 90, 1224.CrossRefGoogle Scholar
Kemp, P.F., Sherr, B.F., Sherr, E.B. and Cole, J.J., 1993. Handbook of methods in aquatic microbial ecology , Lewis Publishers, Boca Raton.Google Scholar
Matveev, V., Matveeva, L. and Jones, G.J., 1994. Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity – implications for biomanipulation in Australia. Aust. J. Mar. Freshw. Res. , 45, 889904.CrossRefGoogle Scholar
Moss, B., Stephen, D., Alvarez, C., Becares, E., Van De Bund, W., Collings, S.E., Van Donk, E., De Eyto, E., Feldmann, T., Fernandez-Alaez, C., Fernandez-Alaez, M., Franken, R.J.M., Garcia-Criado, F., Gross, E.M., Gyllstrom, M., Hansson, L.A., Irvine, K., Jarvalt, A., Jensen, J.P., Jeppesen, E., Kairesalo, T., Kornijow, R., Krause, T., Kunnap, H., Laas, A., Lille, E., Lorens, B., Luup, H., Miracle, M.R., Noges, P., Noges, T., Nykanen, M., Ott, I., Peczula, W., Peeters, E., Phillips, G., Romo, S., Russell, V., Salujoe, J., Scheffer, M., Siewertsen, K., Smal, H., Tesch, C., Timm, H., Tuvikene, L., Tonno, I., Virro, T., Vicente, E. and Wilson, D., 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat. Conserv. Mar. Freshw. Ecosyst. , 13, 507549.CrossRefGoogle Scholar
Moss, B., Barker, T., Stephen, D., Williams, A.E., Balayla, D.J., Beklioglu, M. and Carvalho, L., 2005. Consequences of reduced nutrient loading on a lake system in a lowland catchment: deviations from the norm? Freshw. Biol. , 50, 16871705.CrossRefGoogle Scholar
Oberhaus, L., Gélinas, M., Pinel-Alloul, B., Ghadouani, A. and Humbert, J.F., 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. J. Plankton Res. , 29, 827838.CrossRefGoogle Scholar
Peretyatko, A., 2006. Bepaling van de ecologische status van sommige vijvers beheerd door de A.G.R. van het B.I.M. , Vrije Universiteit Brussel, Brussels.Google Scholar
Peretyatko, A., 2007. Phytoplankton Dynamics in Eutrophic Peri-urban Ponds in Relation to Biotic and Abiotic Factors; Implications for Management and Restoration. Ph.D. Thesis, Vrije Universiteit Brussel, Brussels.
Peretyatko, A., Symoens, J.J. and Triest, L., 2007a. Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds, implications for pond management and restoration. Belg. Journ. Bot. , 140, 8399.Google Scholar
Peretyatko, A., Teissier, S., Symoens, J.J. and Triest, L., 2007b. Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquat. Conserv. Mar. Freshw. Ecosyst. , 17, 584601.CrossRefGoogle Scholar
Peretyatko, A., Teissier, S., De Backer, S. and Triest, L., 2009. Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia , 634, 125135.CrossRefGoogle Scholar
Pflugmacher, S., 2004. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat. Tox. , 70, 169178.CrossRefGoogle ScholarPubMed
Pourriot, R., 1995. Réponses adaptatives du zooplancton à la prédation. In: Pourriot, R. and Meybeck, M. (eds.), Limnologie Générale , Masson, Paris, 610627.Google Scholar
Reynolds, C.S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia , 369, 1126.CrossRefGoogle Scholar
Reynolds, C.S., 2000. Phytoplankton designer – or how to predict compositional responses to trophic-state change. Hydrobiologia , 424, 123132.CrossRefGoogle Scholar
Reynolds, C.S., 2006. Ecology of phytoplankton , Cambridge University Press, Cambridge.CrossRef
Reynolds, C.S., Oliver, R.L. and Walsby, A.E., 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N. Z. J. Mar. Freshw. Res. , 21, 379390.CrossRefGoogle Scholar
Rinta-Kanto, J.M., Konopko, E.A., Debruyn, J.M., Bourbonniere, R.A., Boyer, G.L. and Wilhelm, S.W., 2009. Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae , 8, 665673.CrossRefGoogle Scholar
Sanchis, D., Carrasco, D., Padilla, C., Leganés, F., Fernández-Valiente, E., Del Campo, F.F. and Quesada, A., 2002. Spatial and temporal heterogeneity in succession of cyanobacterial blooms in a Spanish reservoir. Ann. Limnol. - Int. J. Lim. , 38, 173183.CrossRefGoogle Scholar
Sarnelle, O., 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology , 73, 551560.CrossRefGoogle Scholar
Scheffer, M., 1998. Ecology of shallow lakes , Kluwer Academic Publishers, Dordrecht.Google ScholarPubMed
Shapiro, J., 1973. Blue-Green Algae: Why They Become Dominant. Science , 179, 382384.CrossRefGoogle ScholarPubMed
Shapiro, J., 1997. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshw. Biol. , 37, 307323.CrossRefGoogle Scholar
ndergaard, M. and Moss, B., 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: Jeppesen, E., Sondergaard, M., Sondergaard, M. and Christoffersen, K. (eds.), The structuring role of submerged macrophytes in lakes , Springer, New York, 115133.CrossRefGoogle Scholar
Søndergaard, M., Jensen, J.P. and Jeppesen, E., 2005. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshw. Biol. , 50, 16051617.CrossRefGoogle Scholar
Ter Braak, C.J.F. and Smilauer, P., 2002. CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4.5) , Microcomputer Power, Ithaca.Google Scholar
Van Donk, E. and Van De Bund, W.J., 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. , 72, 261274.CrossRefGoogle Scholar
Wetzel, G.R. and Likens, E.G., 1990. Limnological Analyses , Springer-Verlag, New York.Google Scholar
Willame, R., Jurczak, T., Iffly, J.F., Kull, T., Meriluoto, J. and Hoffmann, L., 2005. Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia , 551, 99117.CrossRefGoogle Scholar
Supplementary material: PDF

OLM - limn 46(2) 2010 p.121 - Assessment of the risk of cyanobacterial ...

Appendices

Download OLM - limn 46(2) 2010 p.121 - Assessment of the risk of cyanobacterial ...(PDF)
PDF 1 MB