Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T03:58:18.788Z Has data issue: false hasContentIssue false

Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Islands, Antarctica

Published online by Cambridge University Press:  03 June 2009

Antonio Curtosi
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Canada G5L 3A1
Emilien Pelletier
Affiliation:
Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Canada G5L 3A1
Cristian L. Vodopivez
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina
Walter P. Mac Cormack*
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina

Abstract

In order to establish the environmental status of areas close to Antarctic stations it is necessary to document levels of contaminants present in these sites. Several petrogenic and pyrogenic sources have been reported for polycyclic aromatic hydrocarbons (PAHs) in Antarctica. In this work, levels of 25 PAHs were measured in suspended particulate matter (SPM), surface sediment and marine organisms (fish Notothenia coriiceps, bivalve Laternula elliptica and gastropod Nacella concinna) from Potter Cove. Total PAH levels from SPM were low and similar in all sites studied (30–82 ng g-1 dw), phenanthrene being the dominant compound (68–84%). The exception was an area close to the wharf where significantly higher values of light PAHs such as naphthalene, acenaphthylene, 2,3,5-trimethylnaphthalene and fluorene were detected, indicating the influence of recent fuel spills. PAH concentrations in surface sediments were generally low (37–252 ng g-1 dw) except for two sites (1762 and 1908 ng g-1 dw) which suggested an accumulation process associated with the water circulation pattern. Liver tissue of N coriiceps presented significantly higher PAH levels (257 ng g-1 dw) compared with gonads. The pattern of individual compounds from substrates and organisms suggests a petrogenic and low-temperature combustion origin.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aislabie, J., Foght, J. Saul, D. 2000. Aromatic-hydrocarbon degrading bacteria isolated from soil near Scott Base, Antarctica. Polar Biology, 23, 183188.CrossRefGoogle Scholar
ATSDR (Agency for Toxic Substances and Disease Registry). 1995. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA: Public Health Service, U.S. Department of Health and Human Services, 458 pp.Google Scholar
Barrera-Oro, E.R., Marschoff, E.R. Casaux, R.J. 2000. Trends in relative abundance of fjord Notothenia rossii, Gobionotothen gibberifrons and Notothenia coriiceps at Potter Cove, South Shetland Islands, after commercial fishing in the area. CCAMLR Science, 7, 4352.Google Scholar
Barthe, M. Pelletier, É. 2007. Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environmental Chemistry, 4, 271283.CrossRefGoogle Scholar
Baumard, P., Budzinski, H. Garrigues, P. 1998. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environmental Toxicology and Chemistry, 17, 765776.CrossRefGoogle Scholar
Brion, D. Pelletier, E. 2005. Modeling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere, 61, 867876.CrossRefGoogle ScholarPubMed
Cadée, G.C. 1999. Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island. Journal of Sea Research, 41, 149161.CrossRefGoogle Scholar
Cincinelli, A., Martellini, T., Bittoni, L., Russo, A., Gambaro, A. Lepri, L. 2008. Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). Journal of Marine Systems, 73, 208220.CrossRefGoogle Scholar
Clarke, A. Law, R. 1981. Aliphatic and aromatic hydrocarbons in benthic invertebrates from two sites in Antarctica. Marine Pollution Bulletin, 12, 1014.CrossRefGoogle Scholar
Countway, E., Dickhut, R.M. Canuel, E.A. 2003. Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary Rebecca. Organic Geochemistry, 34, 209224.CrossRefGoogle Scholar
Cripps, G.C. 1989. Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antarctic. Antarctic Science, 1, 307312.CrossRefGoogle Scholar
Cripps, G.C. 1992. The extent of hydrocarbon contamination in the marine environment from a research station in the Antarctic. Marine Pollution Bulletin, 25, 288292.CrossRefGoogle Scholar
Cripps, G.C. Priddle, J. 1991. Review: hydrocarbons in the Antarctic marine environment. Antarctic Science, 3, 233250.CrossRefGoogle Scholar
Cripps, G.C. Priddle, J. 1995. Hydrocarbon content of an Antarctic infaunal bivalve-historical record or life cycle changes? Antarctic Science, 7, 127136.CrossRefGoogle Scholar
Crockett, A.B. White, G.J. 2003. Mapping sediment contamination and toxicity in Winter Quarters Bay, McMurdo Station, Antarctica. Environmental Monitoring and Assessment, 85, 257275.CrossRefGoogle ScholarPubMed
Curtosi, A., Pelletier, E., Vodopivez, C.L. Mac Cormack, W.P. 2007. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica): role of permafrost as a low-permeability barrier. Science of the Total Environment, 383, 193204.CrossRefGoogle ScholarPubMed
Deb, S.C., Araki, T. Fukushima, T. 2000. Polycyclic aromatic hydrocarbons in fish organs. Marine Pollution Bulletin, 40, 882885.CrossRefGoogle Scholar
Douabul, A.A.Z., Heba, H.M.A. Fareed, K.H. 1997. Polynuclear aromatic hydrocarbon in fish from the Red Sea coast of Yemen. Hydrobiologia, 352, 251262.CrossRefGoogle Scholar
Ferguson, S.H., Franzmann, P.D., Revill, A.T., Snape, I. Rayner, J.L. 2003. The effects of nitrogen and water on mineralisation of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Regions Science and Technology, 37, 197212.CrossRefGoogle Scholar
Filipkowska, A., Lubecki, L. Kowalewska, G. 2005. Polycyclic aromatic hydrocarbon analysis in different matrices of the marine environment. Analytica Chimica Acta, 547, 243254.CrossRefGoogle Scholar
Grotti, M., Soggia, F., Lagomarsino, C., Dalla Riva, S., Goessler, W. Francesconi, K.A. 2008. Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarctic Science, 20, 3951.CrossRefGoogle Scholar
Hellou, J., Mackay, D. Fowler, B. 1995. Bioconcentration of polycyclic aromatic hydrocarbons from sediments to muscle of fish. Environmental Science and Technology, 29, 25552560.CrossRefGoogle Scholar
Jonsson, G., Bechmann, R.K., Bamber, S.D. Baussant, T. 2004. Bioconcentration, biotransformation and elimination of polycyclic aromatic hydrocarbons in sheepshead minnows (Cyprinodon variegatus) exposed to contaminated seawater. Environmental Toxicology and Chemistry, 23, 15381548.CrossRefGoogle ScholarPubMed
Kan, A.T., Fu, G. Tomson, M.B. 1994. Adsoption/desorption hysteresis in organic pollutant and soil/sediment. Environmental Science and Technology, 28, 859867.CrossRefGoogle Scholar
Kennicutt, M.C. II, Mcdonald, T.J., Denoux, G.J. Mcdonald, S.J. 1992a. Hydrocarbons contamination on the Antarctic Peninsula. I. Arthur Harbor subtidal sediments. Marine Pollution Bulletin, 24, 499506.CrossRefGoogle Scholar
Kennicutt, M.C. II, Mcdonald, T.J., Denoux, G.J. Mcdonald, S.J. 1992b. Hydrocarbon contamination on the Antarctic Peninsula II. Arthur Harbor inter and subtidal limpets (Nacella concinna). Marine Pollution Bulletin,, 24, 506511.CrossRefGoogle Scholar
Long, E.R., Macdonald, D.D., Smith, S.L. Calder, F.D. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 8197.CrossRefGoogle Scholar
Martins, C.C., Bícego, M.C., Taniguchi, S. Montone, R.C. 2004. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 16, 117122.CrossRefGoogle Scholar
Mercuri, G., Iken, K., Ledesma, B. Dubois, R.F. 1998. On the distribution patterns and density of the Antarctic infaunal bivalve Laternula elliptica in Potter Cove, King George Island, Antarctica. Berichte zur Polarforschung, 299, 137143.Google Scholar
Negri, A., Burns, K., Boyle, S., Brinkman, D. Webster, N. 2006. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143, 456467.CrossRefGoogle ScholarPubMed
Roese, M. Drabble, M. 1998. Wind-driven circulation in Potter Cove. Berichte zur Polarforschung, 299, 4046.Google Scholar
Sanchez-Pardo, J. Rovira, J. 1987. Hidrocarburos alifáticos y aromáticos policíclicos detectados en aguas del estrecho de Bransfield. Expedición BIOMASS III (Antarctic ’86). In Castellvi, J., ed. Actas del Segundo Simposyum español de estudios antárticos. Madrid: Consejo Superior de Investigaciones Científicas, 117124.Google Scholar
Schloss, I. Ferreyra, G.A. 2002. Primary production, light and vertical mixing in Potter Cove, a shallow coastal Antarctic environment. Polar Biology, 25, 4148.CrossRefGoogle Scholar
Schloss, I. Ferreyra, G.A. Mercuri, G. Kowalke, J. 1999. Potential food availability for benthic filter feeders in an Antarctic coastal shallow environment: a sediment trap study. In Arntz, W.E. & Rios, C., eds. Magellan-Antarctic: ecosystems that drifted apart. Scientia Marina, 63 (Supl. 1), 99–111.Google Scholar
Schultz, M.E. Schultz, R.J. 1982. Induction of hepatic tumors with 7,12-dimethylbenz(a)anthracene in two species of viviparous fishes (genus Poeciliopsis). Environmental Research, 27, 337351.CrossRefGoogle Scholar
Shappell, N.W., Carlino-Macdonald, U., Amin, S., Kumar, S. Sikka, H.C. 2003. Comparative metabolism of chrysene and 5-methylchrysene by rat and rainbow trout liver microsomes. Toxicological Sciences, 72, 260266.CrossRefGoogle ScholarPubMed
Soclo, H.H., Garrigues, P. Ewald, M. 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387396.CrossRefGoogle Scholar
Urban, H.J. Mercuri, G. 1998. Population dynamics of the bivalve Laternula elliptica from Potter Cove, King George Island, South Shetland Islands. Antarctic Science, 10, 153160.CrossRefGoogle Scholar
Varanasi, U. Stein, J.E. 1991. Disposition of xenobiotic chemicals and metabolites in marine organisms. Environmental Health Perspectives, 90, 93100.Google ScholarPubMed
Veit-Köhler, G. 1998. Meiofauna study in the Potter Cove: sediment situation and resource availability for small crustaceans (Copepoda and Peracarida). Berichte zur Polarforschung, 299, 132136.Google Scholar
Vodopivez, C., Mac Cormack, W.P., Villaamil, E., Curtosi, A., Pelletier, E. Smichowski, P. 2008. Evidence of pollution with hydrocarbons and heavy metals in the surroundings of Jubany Station. Berichte zur Polarforschung, 571, 357364.Google Scholar