Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:49:28.132Z Has data issue: false hasContentIssue false

Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments

Published online by Cambridge University Press:  16 November 2007

Marco Grotti*
Affiliation:
Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
Francesco Soggia
Affiliation:
Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
Cristina Lagomarsino
Affiliation:
Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
Simona Dalla Riva
Affiliation:
Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genova, Italy
Walter Goessler
Affiliation:
Karl-Franzens-University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz, Austria
Kevin A. Francesconi
Affiliation:
Karl-Franzens-University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz, Austria

Abstract

In an attempt to improve the understanding of the natural variability and distribution of trace elements in Antarctic organisms, the concentrations of arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, vanadium and zinc in representative benthic species from two pristine coastal environments were measured and compared with literature data for other uncontaminated coastal ecosystems. Correlations between the elements, differences between the species and between the sampling sites were examined by principal component analysis. Metal accumulation was particularly evident in the tissues of the sea star Odontaster validus, the bivalve mollusc Laternula elliptica and in the red alga Phyllophora antarctica. However, metal accumulation was not the same for all the analytes, but, rather, depended on the organism characteristics. In particular, the soft tissues of Odontaster validus were characterized by high concentrations of cadmium, zinc and copper, those of Phyllophora antarctica by high concentrations of manganese and nickel, and the tissues of Laternula elliptica by high concentrations of all measured elements, particularly in its digestive gland. The Antarctic data as well as those reported for other pristine coastal ecosystems showed remarkably high natural variability in metal content, which must be taken into account when interpreting results from biomonitoring programmes.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, I.-Y., Lee, S.H., Kim, K.T., Shim, J.H. & Kim, D.-Y. 1996. Baseline heavy metal concentrations in the Antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Marine Pollution Bulletin, 32, 592598.CrossRefGoogle Scholar
Andrade, S., Poblet, A., Scagliola, M., Vodopivez, C., Curtosi, A., Pucci, A. & Marcovecchio, J. 2001. Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Environmental Monitoring and Assessment, 66, 147158.CrossRefGoogle ScholarPubMed
Arnaud, P.M. 1977. Adaptations within the Antarctic marine benthic ecosystem. In Llano, G.A., ed. Adaptations within Antarctic ecosystems. Washington, DC: Smithsonian Institution, 135157.Google Scholar
Bargagli, R. 2000. Trace metals in Antarctica related to climate change and increasing human impact. Reviews of Environmental Contamination & Toxicology, 166, 129173.Google ScholarPubMed
Bargagli, R., Monaci, F., Sanchez-Hernandez, J.C. & Cateni, D. 1998. Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecology Progress Series, 169, 6576.CrossRefGoogle Scholar
Bargagli, R., Nelli, L., Ancora, S. & Focardi, S. 1996. Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biology, 16, 513520.CrossRefGoogle Scholar
Berkman, P.A. & Nigro, M. 1992. Trace metal concentrations in scallops around Antarctica: extending the Mussel Watch Programme to the Southern Ocean. Marine Pollution Bulletin, 24, 322323.CrossRefGoogle Scholar
Boyden, C.R. 1974. Trace metal content and body size in molluscs. Nature, 251, 311314.CrossRefGoogle ScholarPubMed
Bustamante, P., Bocher, P., Cherel, Y., Miramand, P. & Caurant, F. 2003. Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. The Science of the Total Environment, 313, 2539.CrossRefGoogle ScholarPubMed
Canli, M. & Atli, G. 2003. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121, 129136.CrossRefGoogle Scholar
Dalla Riva, S., Abelmoschi, M.L., Magi, E. & Soggia, F. 2004. The utilization of the Antarctic environmental bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea, northern Victoria Land). Chemosphere, 56, 5969.CrossRefGoogle Scholar
Dalla Riva, S., Abelmoschi, M.L., Chiantore, M., Grotti, M., Magi, E. & Soggia, F. 2003. Biogeochemical cycling of Pb in the coastal marine environment at Terra Nova Bay, Ross Sea. Antarctic Science, 15, 425432.CrossRefGoogle Scholar
Dalla Riva, S., Abelmoschi, M.L., Grotti, M., Soggia, F., Bottaro, M. & Vacchi, M. 2006. The occurrence of lead in the bone tissue of Trematomus bernacchii, Terra Nova Bay, Ross Sea. Antarctic Science, 18, 7580.CrossRefGoogle Scholar
Deheyn, D.D., Gendreau, P., Baldwin, R.J. & Latz, M.I. 2005. Evidence for enhanced bioavailibility of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Marine Environmental Research, 60, 133.CrossRefGoogle ScholarPubMed
De Moreno, J.E.A., Gerpe, M.S., Moreno, V.J. & Vodopivez, C. 1997. Heavy metals in Antarctic organisms. Polar Biology, 17, 131140.CrossRefGoogle Scholar
Den Besten, P.J., Herwig, H.J., Voogt, P.A. & Zandee, D.I. 1989. The presence of metallothionein in the sea star Asterias rubens. In Vernet, J.-P., ed. Heavy metals in the environment. Edinburgh: CEP Consultants Ltd, 582585.Google Scholar
Dos Santos, I.R., Silva-Filho, E.V., Schaefer, C., Sella, S.M., Silva, C.A., Gomes, V., Passos, M.J.D.A.C.R. & Ngan, P.V. 2006. Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environmental Pollution, 140, 304311.CrossRefGoogle ScholarPubMed
Giordano, R., Lombardi, G., Ciaralli, L., Beccaloni, E., Sepe, A., Ciprotti, M. & Costantini, S. 1999. Major and trace elements in sediments from Terra Nova Bay, Antarctica. The Science of The Total Environment, 227, 2940.CrossRefGoogle Scholar
Giuliani, P., Kuneshka, M. & Testa, L. 2001. The Italian environmental policy of research in Antarctica, with special regard to the Antarctic Treaty and the Madrid Protocol. In Caroli, S., Cescon, P. & Walton, D.W.H., eds. Environmental contamination in Antarctica. Amsterdam: Elsevier Science, 337361.CrossRefGoogle Scholar
Grotti, M., Soggia, F., Ianni, C. & Frache, R. 2005. Trace metals distribution in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarctic Science, 17, 289300.CrossRefGoogle Scholar
Hempel, G. 1985. Antarctic marine food webs. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 266270.CrossRefGoogle Scholar
Hornung, H., Kress, N. & Rameloc, G. 1991. Distribution of trace elements in the starfish Astropecten bispinosus from Haifa Bay, Israel. Marine Pollution Bulletin, 22, 307311.CrossRefGoogle Scholar
Jimenets, B., Fossi, M.C., Nigro, M. & Focardi, S. 1999. Biomarker approach to evaluating the impact of scientific stations on the Antarctic environment using Trematomus bernacchii as a bioindicator organism. Chemosphere, 39, 20732078.Google Scholar
Kahle, J. & Zauke, G.P. 2003. Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere, 51, 409417.CrossRefGoogle ScholarPubMed
Lenihan, H.S., Oliver, J.S., Oakden, J.M. & Stephenson, M.D. 1990. Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Marine Pollution Bulletin, 21, 422430.CrossRefGoogle Scholar
Lohan, M.C., Statham, P.J. & Peck, L. 2001. Trace metals in the Antarctic soft-shelled clam Laternula elliptica: implications for metal pollution from Antarctic research stations. Polar Biology, 24, 808817.CrossRefGoogle Scholar
Luoma, S.N. & Rainbow, P.S. 2005. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science & Technology, 39, 19211931.CrossRefGoogle ScholarPubMed
Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R.A., Jickells, T.D., Kubilay, N., Prospero, J.M. & Tegen, I. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19, doi:10.1029/2004GB002402.CrossRefGoogle Scholar
Mauri, M., Orlando, E., Nigro, M. & Regoli, F. 1990. Heavy metals in the Antarctic scallop Adamussium colbecki. Marine Ecology Progress Series, 67, 2733.CrossRefGoogle Scholar
Minganti, V., Capelli, R. & De Pellegrini, R. 1998. The concentrations of Pb, Cd, Cu, Zn, and V in Adamussium colbecki from Terra Nova Bay (Antarctica). International Journal of Environmental and Analytical Chemistry, 71, 257263.CrossRefGoogle Scholar
Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. 2006. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143, 456467.CrossRefGoogle ScholarPubMed
Nigro, M., Regoli, F., Rocchi, L. & Orlando, E. 1997. Heavy metals in Antarctic molluscs. In Battaglia, B., Valencia, J. & Walton, D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 409412.Google Scholar
Nygard, T., Lie, E., Nils, R. & Steinnes, E. 2001. Metal dynamics in an Antarctic food chain. Marine Pollution Bulletin, 42, 598602.CrossRefGoogle Scholar
Petri, G. & Zauke, G.P. 1993. Trace metals in crustaceans in the Antarctic Ocean. Ambio, 22, 529536.Google Scholar
Rainbow, P.S. 1989. Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Marine Biology, 103, 513518.CrossRefGoogle Scholar
Rainbow, P.S. 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120, 497507.CrossRefGoogle ScholarPubMed
Sanchez-Hernandez, J.C. 2000. Trace element contamination in Antarctic ecosystems. Review of Environmental Contamination and. Toxicology, 166, 83127.Google ScholarPubMed
Soggia, F., Ianni, C., Magi, E. & Frache, R. 2001. Antarctic Environmental Specimen Bank. In Caroli, S., Cescon, P. & Walton, D.W.H., eds. Environmental contamination in Antarctica. Amsterdam: Elsevier Science, 305325.CrossRefGoogle Scholar
Soggia, F., Abelmoschi, M.L., Dalla Riva, S., De Pellegrini, R. & Frache, R. 2000. Antarctic environmental specimen bank - first five years of experience. International Journal of Environmental and Analytical Chemistry, 79, 367378.CrossRefGoogle Scholar
Sures, B. & Reinmann, N. 2003. Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biology, 26, 680686.CrossRefGoogle Scholar
Tessier, A., Campbell, P.G.C., Auclair, J.C. & Bisson, M. 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Canadian Journal of Fisheries and Aquatic Sciences, 41, 14631472.CrossRefGoogle Scholar
Turekian, K.K. & Wedepohl, K.H. 1961. Distribution of the elements in some major units of the Earth's crust. Geological Society of America Bulletin, 72, 175192.CrossRefGoogle Scholar