Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T11:46:47.607Z Has data issue: false hasContentIssue false

4000 years of human impact and vegetation change in the central Peruvian Andes — with events parallelling the Maya record?

Published online by Cambridge University Press:  02 January 2015

A. J. Chepstow-Lusty
Affiliation:
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, England
K. D. Bennett
Affiliation:
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, England
V. R. Switsur
Affiliation:
Godwin Laboratory, Free School Lane, Cambridge CB2 3RS, England
A. Kendall
Affiliation:
The Cusichaca Trust, Springfields, 62 High Street, Belbroughton, Stourbridge DY9 9SU, England

Extract

A lake-sediment sequence from Marcacocha in the central Peruvian Andes provides a well-dated and continuous vegetation record from an area rich in Inca and pre-Inca remains over the last 4000 years. Climatic changes in this record at AD 1–100 and AD 900–1050 seem to be broadly contemporaneous with major arid events from Lake Chichancanab, Mexico, affecting the Maya civilization and corroborated by the Quelccaya and Huascaran ice cores in Peru.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansion, I. 1986. El arbol y el bosque en la sociedad Andina. Lima: Instituto Nacional Forestal y Fauna-FAO.Google Scholar
Birks, H., B, J.. & Gordon, A. D., 1985. Numerical methods in Quaternary pollen analysis. London: Academic Press.Google Scholar
Bruhns, K. 1994. Ancient South America. Cambridge: Cambridge University Press.Google Scholar
Carter, S. 1988. The vegetation of the Patacancha Valley, in Kendall, A. (ed.), The Patacancha Project 1987-1988. Unpublished report, The Cusichaca Trust.Google Scholar
Chiclote, J. P., Vidai, D. O.., Jap, R. J. & Chura, E. B.. 1985. Apuntes sobre algunas especies forestales nativas de la sierra Peruana. Lima: Ministerio de Agricultura, Instituto Nacional Forestal y Fauna.Google Scholar
Curtis, J. H.. Hodell, D. A. & Brenner, M.. 1996. Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications l'or Maya cultural evolution, Quaternary Research 46: 3747.CrossRefGoogle Scholar
Diez De San Michel, G. 1567[1964]. Visita hecha a la Provincia de Chucuito. Lima: Casa de la Cultura.Google Scholar
Ellenberg, H. 1979. Man's influence on tropical mountain ecosvstems in South America, Journal of Ecology: 67:401-16.Google Scholar
Graf, K. 1981. Palynological investigations of two post-glacial peat bogs near the boundary of Bolivia and Peru, Journal of Biogeography 8: 353–68.CrossRefGoogle Scholar
Fischman, J. 1996. California social climbers: low water prompts high status, Science 272: 811–12.Google Scholar
Grove, J. 1988. The Little Ice Age. London: Methuen.CrossRefGoogle Scholar
Hansen, B.C.S. & Rodhell, D. T.. 1995. A Late-Glacial/Holocene pollen record from the eastern Andes of northern Peru, Quaternary Research 44: 216–27.CrossRefGoogle Scholar
Hansen, B.S.C., Seltzer, G. O. & Wright, H. E. JR. 1994. Late Quaternary vegetational change in the central Peruvian Andes. Palaeogeogeography, Palaeoclimatology, Palaeo-ecology 109;263-85.CrossRefGoogle Scholar
Hansen, B.C.S., Wright, H. E. JR. & Bradbury, J. P., 1984. Pollen studies on the Junin area, central Peruvian Andes, Geological Society of America Bulletin 95: 145465.Google Scholar
Hastorf, C. 1988. The use of paleoethnobotanical data in prehistoric studies of crop production, processing, and consumption, in Hastorf & Popper (ed.): 119–44.Google Scholar
Hastorf, C. & Popper, V. S. (ed.). 1988. Currentpaleocthnobotany: analytical methods and cultural interpretations of archaeological plant remains. Chicago (IL): University of Chicago Press.Google Scholar
Hodell, D. A., Curtis, J. H. & Brenner, M.. 1995. Possible role of climate in collapse of Classic Maya civilization, Nature 375: 3914.Google Scholar
Hoogiiiemstra, H. 1983. Pollen morphology of the Plantago species of the Colombian Andes and its application to fossil material, Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 15(58):41–6.Google Scholar
Keatinge, R. W. (ED.) 1988. Peruvian prehistory. Cambridge: Cambridge University Press.Google Scholar
Kendall, A. (ED.) 1992. Arqueología y desarrollo rural: infrastructure agrìcola e hidráulica pre-hispanica presente y futuro. (Cusichaca Trust). Lima: Asociación Grafica Educativa.Google Scholar
Kkishnamurthy, R. V., Syriip, K. A., Barraran, M. & Long, A.. 1995. Late Glacial climate record of Midwestern United States from the hydrogen isotope ratio of lake organic matter, Science 269: 15657.Google Scholar
Lamb, H. 1965. Climate history and the modern world. London: Melhuen.Google Scholar
NATIONAL RESEARCH COUNCIL. 1989. Lost crops of the Inca: little known plants of the Andes with promise for worldwide cultivation. Washington (DC): National Academy Press.Google Scholar
Ortiloff, C.R. & Kolata., A. L. 1993. Climate and collapse: agro-ecological perspectives on the decline of the Tiwanaku State, Journal of Archaeological Science 20: 195221.Google Scholar
Pearsal, D. M. 1980. Pachamachay Ethnobotanical Report: plant utilization in a hunting base camp, in Rick, J. K. (ed.), Prehistoric hunters of the High Andes: 191232. New York (NY): Academic Press.Google Scholar
Pearsal, D. M. 1983. Evaluating the stability of subsistence strategies by use of paleoethnobotanical data, Journal of Ethnobiology 3(2): 121–37.Google Scholar
Pearsal, D. M. 1988. Interpreting the meaning of macroremain abundance: the impact of source and context, in Hastorf & Popper (ed.): 97118.Google Scholar
Philander, S. G. 1989. El Nino, La Nina and the Southern Oscillation. London: Academic Press.Google Scholar
Piperno, D. R., Bush, M. & Colinvaux, P.. 1991. Paleoocologioal perspectives on human adaption in central Panama II, Holocene 6(3):227–50.Google Scholar
Seltzer, G. & Hastorf, C.. 1990. Climatic change and its effect on Prehispanic agriculture in the central Peruvian Andes, Journal of Field Archaeology 17: 397414.Google Scholar
Sherbondy, J. F. 1986. Mallki: ancestros y cultivos dc arboles en los Andes, Lima: FAO.Google Scholar
Simmonds, N. W. 1990. Evolution of crop plants. London: Longman.Google Scholar
Stine, S. 1994. Extreme and persistent drought in California and Patagonia during mediaeval time, Nature 369:546-9,Google Scholar
Stuiver, M. & Reimer, P. J.. 1993a. Extended L4C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon 35: 215–30.Google Scholar
Thompson, L. G., Davis, M. E., Moslky-Thompson, E. & Du, K.-B.. 1988. Pre-Incan agricultural activity recorded in dust layers in two tropical ice cores, Nature 307: 763-5.Google Scholar
Thompson, L. G., Mosley-Thompson, E., Dansgaard, W. & Gkootes, P. M.. 1986. The ‘Little Ice Age’ as recorded in the stratigraphy of the tropical Quelccaya ice cap, Science 234: 3614.Google Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F. & Liu, K.-B.. 1995. Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru, Science 269: 4650.Google Scholar
Vavilov, N. I. 1926. Studies on the origin of cultivated plants. Leningrad: Institute of Applied Botany and Plant Breeding.Google Scholar
Vavilov, N. I. 1992. Origin and geography of cultivated plants. Cambridge: Cambridge University Press.Google Scholar
Wickers, D. R. & Lowdermilk, H.. 1938. Soil conservation in ancient Peru, Soil Conservation 4: 91–4.Google Scholar
Wright, H. E. JR. 1984. Late Glacial and Late Holocene moraines in the Cerros Cuchpanga, central Peru. Quaternary Research 21: 275–85.Google Scholar