Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T11:46:42.907Z Has data issue: false hasContentIssue false

DO POOR ENVIRONMENTAL CONDITIONS DRIVE TRACHOMA TRANSMISSION IN BURUNDI? A MATHEMATICAL MODELLING STUDY

Published online by Cambridge University Press:  22 November 2021

D. NDISABIYE*
Affiliation:
School of Medicine, The University of Notre Dame Australia, 160 Oxford St, Darlinghurst, NSW2010, Australia; e-mail: edward.waters.nsw@gmail.com.
E. K. WATERS
Affiliation:
School of Medicine, The University of Notre Dame Australia, 160 Oxford St, Darlinghurst, NSW2010, Australia; e-mail: edward.waters.nsw@gmail.com.
R. GORE
Affiliation:
School of Arts & Sciences, The University of Notre Dame Australia, 104 Broadway, Broadway, NSW2010, Australia; e-mail: russellgore9611@gmail.com.
H. SIDHU
Affiliation:
School of Sciences, The University of New South Wales, Canberra, Australia; e-mail: h.sidhu@adfa.edu.au.

Abstract

Trachoma is an infectious disease and it is the leading cause of preventable blindness worldwide. To achieve its elimination, the World Health Organization set a goal of reducing the prevalence in endemic areas to less than $5$ % by 2020, utilizing the SAFE (surgery, antibiotics, facial cleanliness, environmental improvement) strategy. However, in Burundi, trachoma prevalences of greater than $5$ % are still reported in 11 districts and it is hypothesized that this is due to the poor implementation of the environmental improvement factor of the SAFE strategy. In this paper, a model based on an ordinary differential equation, which includes an environmental transmission component, is developed and analysed. The model is calibrated to recent field data and is used to estimate the reductions in trachoma that would have occurred if adequate environmental improvements were implemented in Burundi. Given the assumptions in the model, it is clear that environmental improvement should be considered as a key component of the SAFE strategy and, hence, it is crucial for eliminating trachoma in Burundi.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. R. A., Chaplain, M. A. J. and Rejniak, K. A., Single-cell-based models in biology and medicine (Springer Science & Business Media, Basel, 2007); doi:10.1093/imammb/dqn008.CrossRefGoogle Scholar
Anderson, R. M., May, R. M., Boily, M.-C., Garnett, G. P. and Rowley, J. T., “The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS”, Nature 352 (1991) 581589; doi:10.1038/352581a0.CrossRefGoogle Scholar
Banasiak, J. and Lachowicz, M., Methods of small parameter in mathematical biology, 1st edn (Birkhäuser, Basel, 2014); doi:10.1007/978-3-319-05140-6.CrossRefGoogle Scholar
Becker, Y., “The chlamydia: molecular biology of procaryotic obligate parasites of eucaryocytes”, Microbiol. Rev. 42 (1978) 274306; http://pascal-francis.inist.fr/vibad/index.phpaction=getRecord Detail&idt=PASCAL7950005265.CrossRefGoogle ScholarPubMed
Burton, M. J. et al.,The long-term natural history of trachomatous trichiasis in the Gambia”, Invest. Ophthalmol. Vis. Sci. 47 (2006) 847852; doi:10.1167/iovs.05-0714.CrossRefGoogle ScholarPubMed
Chao, D. L., Longini, I. M. Jr and Morris, J. G. Jr, “Modeling cholera outbreaks”, Curr. Top. Microbiol. Immunol. 379 (2014) 195209; doi:10.1007/82-2013-307.Google ScholarPubMed
Dolin, P. J., Faal, H., Johnson, G. J., Minassian, D., Sowa, S., Day, S., Ajewole, J., Mohamed, A. A. and Foster, A., “Reduction of trachoma in a sub-Saharan village in absence of a disease control programme”, Lancet 349 (1997) 15111512; doi:10.1016/S0140-6736(97)01355-X.CrossRefGoogle Scholar
Emerson, P. M., Bailey, R. L., Mahdi, O. S., Walraven, G. E. and Lindsay, S. W., “Transmission ecology of the fly Musca sorbens, a putative vector of trachoma”, Trans. R. Soc. Trop. Med. Hyg. 94 (2000) 2832; doi:10.1016/S0035-9203(00)90427-9.CrossRefGoogle ScholarPubMed
Emerson, P. M., Burton, M., Solomon, A. W., Bailey, R. and Mabey, D., “The SAFE strategy for trachoma control: using operational research for policy, planning and implementation”, Bull. World Health Organ. 84 (2006) 613619; https://www.scielosp.org/article/ssm/content/raw/ ?resource_ssm_path=/media/assets/bwho/v84n8/v84n8a12.pdf.CrossRefGoogle Scholar
Emerson, P. M. et al.,Role of flies and provision of latrines in trachoma control: cluster-randomised controlled trial”, Lancet 363 (2004) 10931098; doi:10.1016/S0140-6736(04)15891-1.CrossRefGoogle ScholarPubMed
Gambhir, M. et al.,The development of an age-structured model for trachoma transmission dynamics, pathogenesis and control”, PLoS Negl. Trop. Dis. 3 (2009) e462; doi:10.1371/journal.pntd.0000462.CrossRefGoogle ScholarPubMed
Gause, G. F., The struggle for existence: a classic of mathematical biology and ecology (Dover, Mineola, New York, 2019); ISBN: 9780486838298.Google Scholar
Hägi, M., Schémann, J.-F., Mauny, F., Momo, G., Sacko, D., Traoré, L., Malvy, D. and Viel, J.-F., “Active trachoma among children in Mali: clustering and environmental risk factors”, PLoS Negl. Trop. Dis. 4 (2010) e583; doi:10.1371/journal.pntd.0000583.CrossRefGoogle ScholarPubMed
Heffernan, J. M., Smith, R. J. and Wahl, L. M., “Perspectives on the basic reproductive ratio”, J. R. Soc. Interface 2 (2005) 281293; doi:10.1098/rsif.2005.0042.CrossRefGoogle ScholarPubMed
International Trachoma Initiative, Zithromax in the elimination of blinding trachoma: a program manager’s guide (International Trachoma Initiative, Decatur, Georgia, 2010), available at: https://www.iapb.org/learn/resources/zithromax-in-the-elimination-of-blinding-trachoma-a- program-managers-guide/.Google Scholar
Jimenez, V., Gelderblom, H. C., Flueckiger, R. M., Emerson, M. P. and Haddad, D., “Mass drug administration for trachoma: how long is not long enough?”, PLoS Negl. Trop. Dis. 9 (2015) e0003610; doi:10.1371/journal.pntd.0003610.CrossRefGoogle Scholar
Keeling, J. M. and Rohani, P., Modeling infectious diseases in humans and animals (Princeton University Press, Princeton, NJ, 2011); doi:10.1515/9781400841035.CrossRefGoogle Scholar
Kolaczinski, J. H., Robinson, E. and Finn, T. P., “The cost of antibiotic mass drug administration for trachoma control in a remote area of South Sudan”, PLoS Negl. Trop. Dis. 5 (2011) e1362; doi:10.1371/journal.pntd.0001362.CrossRefGoogle Scholar
Last, A. R., Burr, S. E., Weiss, H. A., Harding-Esch, E. M., Cassama, E., Nabicassa, M., Mabey, D. C., Holland, M. J. and Bailey, R. L., “Risk factors for active trachoma and ocular chlamydia trachomatis infection in treatment-naïve trachoma-hyperendemic communities of the Bijagós Archipelago, Guinea Bissau”, PLoS Negl. Trop. Dis. 8 (2014) e2900; doi:10.1371/journal.pntd.0002900.CrossRefGoogle ScholarPubMed
Li, J., Blakeley, D. and Smith, R. J., “The failure of ${R}_0$ ”, Comput. Math. Methods Med. 2011 (2011) 527610; doi:10.1155/2011/527610.CrossRefGoogle Scholar
Lietman, T., Porco, T., Dawson, C. and Blower, S., “Global elimination of trachoma: how frequently should we administer mass chemotherapy?”, Nat. Med. 5 (1999) 572576; doi:10.1038/8451.CrossRefGoogle ScholarPubMed
Lietman, T. M., Pinsent, A., Liu, F., Deiner, M., Hollingsworth, T. D. and Porco, T. C., “Models of trachoma transmission and their policy implications: from control to elimination”, Clin. Infect. Dis. 66 (2018) S275S280; doi:10.1093/cid/ciy004.CrossRefGoogle Scholar
Montgomery, M. A., Desai, M. M. and Elimelech, M., “Assessment of latrine use and quality and association with risk of trachoma in rural Tanzania”, Trans. R. Soc. Trop. Med. Hyg. 104 (2010) 283289; doi:10.1016/j.trstmh.2009.10.009.CrossRefGoogle ScholarPubMed
Ndayishimiye, O. et al.,Population-based survey of active trachoma in 11 districts of Burundi”, Ophthalmic Epidemiol. 18 (2011) 146149; doi:10.3109/09286586.2011.595039.CrossRefGoogle ScholarPubMed
Ndisabiye, D., “R file containing all the code for calibration of the SIE model” (online; accessed 27 October 2020); https://figshare.com/articles/online_resource/File_containing_all_the_ code_for_calibration_of_the_SIE_model_/13146779.Google Scholar
Ndisabiye, D., Gahungu, A., Kayugi, D. and Waters, E. K, “Association of environmental risk factors and trachoma in Gashoho Health District, Burundi”, Afr. Health Sci. 20 (2020) 182189; doi:10.4314/ahs.v20i1.23.CrossRefGoogle ScholarPubMed
Nery, S. V. et al.,A cluster-randomised controlled trial integrating a community-based water, sanitation and hygiene programme, with mass distribution of albendazole to reduce intestinal parasites in Timor–Leste: the WASH for WORMS research protocol”, BMJ Open 5 (2015) e009293; doi:10.1136/bmjopen-2015-009293.CrossRefGoogle ScholarPubMed
Ngondi, J., Ole-Sempele, F., Onsarigo, A., Matende, I., Baba, S., Reacher, M., Matthews, F., Brayne, C. and Emerson, P., “Blinding trachoma in post conflict southern Sudan”, PLoS Med. 3 (2006) e478; doi:10.1371/journal.pmed.0030477.CrossRefGoogle Scholar
Pinsent, A., Blake, M. I., Basáñez, M.-G. and Gambhir, M., “Mathematical modelling of trachoma transmission, control and elimination”, Adv. Parasitol. 94 (2016) 148; doi:10.1016/bs.apar.2016.06.002.CrossRefGoogle Scholar
Pinsent, A., Burton, M. J. and Gambhir, M., “Enhanced antibiotic distribution strategies and the potential impact of facial cleanliness and environmental improvements for the sustained control of trachoma: a modelling study”, BMC Med. 14 (2016) Article ID 71; doi:10.1186/s12916-016-0614-6.CrossRefGoogle ScholarPubMed
Pinsent, A., Liu, F., Deiner, M., Emerson, P., Bhaktiari, A., Porco, T. C., Lietman, T. and Gambhir, M., “Probabilistic forecasts of trachoma transmission at the district level: a statistical model comparison”, Epidemics 18 (2017) 4855; doi:10.1016/j.epidem.2017.01.007.CrossRefGoogle Scholar
Ray, K. J. et al.,A rationale for continuing mass antibiotic distributions for trachoma”, BMC Infect. Dis. 7 (2007) Article ID 91; doi:10.1186/1471-2334-7-91.CrossRefGoogle ScholarPubMed
Sahlu, T. and Larson, C., “The prevalence and environmental risk factors for moderate and severe trachoma in southern Ethiopia”, J. Trop. Med. Hyg. 95 (1992) 3641; https://pubmed.ncbi.nlm.nih.gov/1740817/.Google ScholarPubMed
Segel, L. A. and Edelstein-Keshet, L., A primer on mathematical models in biology (SIAM, New York, 2013); doi:10.1137/1.9781611972504.CrossRefGoogle Scholar
Shattock, A. J., Gambhir, M., Taylor, H. R., Cowling, C. S., Kaldor, J. M. and Wilson, D. P., “Control of trachoma in Australia: a model based evaluation of current interventions”, PLoS Negl. Trop. Dis. 9 (2015) e0003474; doi:10.1371/journal.pntd.0003474.CrossRefGoogle Scholar
Solomon, A. W., World Health Organization, London School of Hygiene and Tropical Medicine and International Trachoma Initiative, Trachoma control: a guide for programme managers (World Health Organization, Geneva, 2006); https://apps.who.int/iris/handle/10665/43405.Google Scholar
Stocks, M. E., Ogden, S., Haddad, D., Addiss, D. G., McGuire, C. and Freeman, M. C., “Effect of water, sanitation, and hygiene on the prevention of trachoma: a systematic review and meta-analysis”, PLoS Med. 11 (2014) e1001605; doi:10.1371/journal.pmed.1001605.CrossRefGoogle ScholarPubMed
Wilson, D. P., Timms, P. and McElwain, D. L. S., “A mathematical model for the investigation of the Th1 immune response to chlamydia trachomatis”, Math. Biosci. 182 (2003) 2744; doi:10.1016/S0025-5564(02)00180-3.CrossRefGoogle ScholarPubMed
World Health Organization, “Global WHO alliance for the elimination of blinding trachoma by 2020”, Wkly. Epidemiol. Rec. 87 (2012) 161168; https://apps.who.int/iris/bitstream/ handle/10665/241910/WER8717-161-168.PDF.Google Scholar