Published online by Cambridge University Press: 17 February 2009
In the absence of surface tension, the problem of determining a travelling surface pressure distribution that displaces a portion of the free surface in a prescribed manner has been solved by several authors, and this “planing-surface” problem is reasonably well understood. The effect of inclusion of surface tension is to change, in a dramatic way, the singularity in the integral equation that describes the problem. It is now necessary in general to allow for isolated impulsive pressure, as well as a smooth distribution over the wetted length. Such pressure points generate jump discontinuities in free-surface slope. Numerical results are obtained here for a class of problems in which there is a single impulse located at the leading edge of the planing surface and detachment with continuous slope at the trailing edge. These results do not appear to approach the classical results in the limit as the surface tension approaches zero, a paradox that is resolved in Part II, which follows.