Article contents
On the crossing of intermediate unstable steady state solutions for thermal ignition in a sphere
Published online by Cambridge University Press: 17 February 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Steady state solutions for spontaneous thermal ignition in a unit sphere are considered. The multiplicity of unstable, intermediate, steady state, temperature profiles is calculated and shown for selected parameter values. The crossing of the temperature profiles corresponding to the unstable, intermediate, steady states is exhibited in a particular case and is proven in general using elementary ideas from analysis. Estimates of the location of crossing points are given.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2001
References
[1]Aris, R., The mathematical theory of diffusion and reaction in permeable catalysts, Vol. 2 (Clarendon Press, Oxford, 1975).Google Scholar
[2]Ash, E., Eaton, B. and Gustafson, K., “Counting the number of solutions in combustion and reactive flow problems”, J. Appl. Math. Phys. (ZAMP) 41 (1990) 558–578.CrossRefGoogle Scholar
[3]Balakrishnan, E., Swift, A. and Wake, G. C., “Multiple solutions in hollow geometries in the theory of thermal ignition”, Appl. Math. Lett. 10 (5) (1997) 41–46.CrossRefGoogle Scholar
[4]Brindley, J., Jivraj, N. A., Merkin, J. H. and Scott, S. K., “Stationary-state solutions for coupled reaction-diffusion and temperature-conduction equations II. Spherical geometry with Dirichlet boundary conditions”, Proc. R. Soc. Lond. A 430 (1990) 479–488.Google Scholar
[5]Chandrasekhar, S., An introduction to the study of stellar structure (Dover, New York, 1967) Ch. IV, 84–182.Google Scholar
[6]Enig, J. W., “Critical parameters in the Poisson-Boltzmann equation of steady state thermal explosion theory”, Combust. Flame 10 (1966) 197–199.Google Scholar
[7]Frank-Kamenetskii, D. A., Diffusion and heat transfer in chemical kinetics, 2nd ed. (Plenum Press, New York, 1969).Google Scholar
[8]Fujita, H., “On the nonlinear equation δu + eu = 0 and υt, = δυ + eυ”, Bull. Amer. Math. Soc. 75 (1965) 132–135.CrossRefGoogle Scholar
[9]Gel'fand, I. M., “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Trans. Series 2 29 (1963) 295–381.CrossRefGoogle Scholar
[10]Gidas, B., Ni, W. N. and Nirenberg, L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys. 68 (1979) 209–243.CrossRefGoogle Scholar
[11]Gray, B. F., “On the critical conditions in a spherical reacting mass”. Combust. Flame 73 (1969) 50–54.CrossRefGoogle Scholar
[12]Gray, B. F. and Wake, G. C., “Critical initial conditions for thermal ignition”, Math. Comput. Modelling 18 (8) (1993) 65–75.CrossRefGoogle Scholar
[14]Kapila, A. K., Matkowsky, B. J. and Vega, J., “Reactive-diffusive system with Arrhenius kinetics: peculiarities of the spherical geometry”, SIAM J. Appl. Math. 38 (1980) 382–401.CrossRefGoogle Scholar
[15]Maddocks, J. H., “Stability and folds”, Archive Rat. Mech. Anal. 99 (1987) 301–328.CrossRefGoogle Scholar
[16]Norbury, J. and Wake, G. C., “Spatial pattern formation for steady states of a population model”, IMA J. Math. Appl. in Medicine & Biology 10 (1993) 19–30.CrossRefGoogle Scholar
[17]Protter, M. H. and Weinberger, H. F., Maximum principles in differential equations (Springer, New York, 1984).CrossRefGoogle Scholar
[18]Steggerda, J. J., “Thermal stability: an extension of Frank-Kamenetskii's theory”, J. Chem. Phys. 43 (1965) 4446–4448.CrossRefGoogle Scholar
[19]Weber, R. O., Wake, G. C. and Balakrishnan, E., “Critical initial conditions for spontaneous thermal ignition”, Faraday Trans. 94 (1998) 3613–3617.CrossRefGoogle Scholar
[20]Zeldovich, Ya. B., Barenblatt, G. I., Librovich, V. B. and Makhviladze, G. M., The mathematical theory of combustion and explosions (Consultants Bureau, Plenum, New York, 1985).CrossRefGoogle Scholar
You have
Access
- 1
- Cited by