Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T04:21:43.602Z Has data issue: false hasContentIssue false

Does argument structure complexity affect reading? A case study of an Italian agrammatic patient with deep dyslexia

Published online by Cambridge University Press:  25 July 2013

ELENA BARBIERI*
Affiliation:
University of Milano-Bicocca
SILVIA AGGUJARO
Affiliation:
Villa Beretta Rehabilitation Unit, Ospedale Valduce
FRANCO MOLTENI
Affiliation:
Villa Beretta Rehabilitation Unit, Ospedale Valduce
CLAUDIO LUZZATTI
Affiliation:
University of Milano-Bicocca
*
ADDRESS FOR CORRESPONDENCE Elena Barbieri, Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1 20126 Milano, Italy. E-mail: elena.barbieri83@gmail.com

Abstract

The argument structure complexity hypothesis (Thompson, 2003) was introduced to account for the verb production pattern of agrammatic patients, who show greater difficulty in producing transitive versus unergative verbs (argument number effect) and in producing unaccusative versus unergative verbs (syntactic movement effect). The present study investigates these two effects in the reading performance of a patient (GR) suffering from deep dyslexia. GR read nouns significantly better than verbs; moreover, her performance was better on unergative than on transitive verbs, whereas the comparison between unergative and unaccusative verbs did not differ significantly. Data support the extension of the argument structure complexity hypothesis to word naming and suggest that the two aspects of argument structure complexity occur at different levels within models of lexical processing.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aggujaro, S., Crepaldi, D., Pistarini, C., Taricco, M., & Luzzatti, C. (2006). Neuro-anatomical correlates of impaired retrieval of verbs and nouns: Interaction of grammatical class, imageability and actionality. Journal of Neurolinguistics, 19, 175194.Google Scholar
Baayen, R. H., Burani, C., & Schreuder, R. (1997). Effects of semantic markedness in the processing of regular nominal singulars and plurals in Italian. In Booij, G. E. & van Marle, J. (Eds.), Yearbook of morphology, 1996 (pp. 1334). Dordrecht: Kluwer Academic.Google Scholar
Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in Dutch: Evidence for a parallel dual route model. Journal of Memory and Language, 37, 94117.Google Scholar
Bastiaanse, R., & van Zonneveld, R. (2005). Sentence production with verbs of alternating transitivity in agrammatic Broca's aphasia. Journal of Neurolinguistics, 18, 5766.Google Scholar
Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0 [Computer software]. Retrieved from http://CRAN.R-project.org/package=lme4Google Scholar
Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D., & Grodzinsky, Y. (2003). The neural reality of syntactic transformations: Evidence from functional magnetic resonance imaging. Psychological Science, 14, 433440.Google Scholar
Berndt, R. S., Haedinges, A. N., Burton, M. W., & Mitchum, C. C. (2002). Grammatical class and imageability in aphasic word production: Their effects are independent. Journal of Neurolinguistics, 15, 353371.Google Scholar
Bird, H., Howard, D., & Franklin, S. (2000). Why is a verb like an inanimate object? Grammatical category and semantic category deficits. Brain and Language, 72, 246309.CrossRefGoogle Scholar
Bird, H., Howard, D., & Franklin, S. (2003). Verbs and nouns: The importance of being imageable. Journal of Neurolinguistics, 16, 113149.Google Scholar
Buchanan, L., McEwen, S., Westbury, C., & Libben, G. (2003). Semantic and semantic error: Implicit access to semantic information from words and nonwords in deep dyslexia. Brain and Language, 84, 6583.Google Scholar
Burzio, L. (1986). Italian syntax. Dordrecht: Reidel.Google Scholar
Cairns, D., Marshall, J., Cairns, P., & Dipper, L. (2007). Event processing through naming: Investigating event focus in two people with aphasia. Language and Cognitive Processes, 22, 201233.Google Scholar
Caramazza, A., & Hillis, A. E. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349, 788790.Google Scholar
Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.Google Scholar
Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.Google Scholar
Cohen, L., Dehaene, S., & Verstichel, P. (1994). Number words and number non-words: A case of deep dyslexia extending to arabic numerals. Brain, 117, 267279.Google Scholar
Colangelo, A., & Buchanan, L. (2005). Semantic ambiguity and the failure of inhibition hypothesis as an explanation for reading errors in deep dyslexia. Brain and Cognition, 57, 3942.CrossRefGoogle ScholarPubMed
Coltheart, M. (1980). Deep dyslexia: A right hemisphere hypothesis. In Coltheart, M., Patterson, K., & Marshall, J. C. (Eds.), Deep dyslexia. London: Routledge & Kegan Paul.Google Scholar
Coltheart, M. (2000). Deep dyslexia is right-hemisphere reading. Brain and Language, 71, 299309.Google Scholar
Coltheart, M., Patterson, K., & Marshall, J. C. (1980). Deep dyslexia. London: Routledge & Kegan Paul.Google Scholar
Crepaldi, D., Aggujaro, S., Arduino, L. S., Zonca, G., Ghirardi, G., Inzaghi, M. G., et al. (2006). Noun–verb dissociation in aphasia: The role of imageability and functional locus of the deficit. Neuropsychologia, 44, 7389.Google Scholar
Crepaldi, D., Berlingeri, M., Paulesu, E., & Luzzatti, C. (2011). A place for nouns and a place for verbs? A critical review of neurocognitive data on grammatical-class effects. Brain and Language, 116, 3349.Google Scholar
De Bleser, R., & Kauschke, C. (2003). Acquisition and loss of nouns and verbs: Parallel or divergent patterns? Journal of Neurolinguistics, 16, 213229.Google Scholar
den Ouden, D. B., Fix, S., Parrish, T., & Thompson, C. K. (2009). Argument structure effects in action verb naming in static and dynamic conditions. Journal of Neurolinguistics, 22, 196215.Google Scholar
Friedmann, N., Taranto, G., Shapiro, L. P., & Swinney, D. (2008). The leaf fell (the leaf): The online processing of unaccusatives. Linguistic Inquiry, 39, 355377.CrossRefGoogle ScholarPubMed
Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434446.Google Scholar
Jonkers, R. (2000). Verb-finding problems in Broca's aphasics. In Bastiaanse, R. & Grodzinsky, Y. (Eds.), Grammatical disorders in aphasia: A neurolinguistic perspective. London: Whurr.Google Scholar
Jonkers, R., & Bastiaanse, R. (1996). The influence of instrumentality and transitivity on action naming in Broca's and anomic aphasia. Brain and Language, 55, 3739.Google Scholar
Jonkers, R., & Bastiaanse, R. (1998). How selective are word class deficits? Two case studies of action and object naming. Aphasiology, 12, 245256.CrossRefGoogle Scholar
Kegl, J. (1995). Levels of representation and units of access relevant to agrammatism. Brain and Language, 50, 151200.Google Scholar
Kim, M., & Thompson, C. K. (2000). Patterns of comprehension and production of nouns and verbs in agrammatism: Implications for lexical organization. Brain and Language, 74, 125.Google Scholar
Kim, M., & Thompson, C. K. (2004). Verb deficits in Alzheimer's disease and agrammatism: Implications for lexical organization. Brain and Language, 88, 120.Google Scholar
Lee, M., & Thompson, C. K. (2004). Agrammatic aphasic production and comprehension of unaccusative verbs in sentence contexts. Journal of Neurolinguistics, 17, 315330.Google Scholar
Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.Google Scholar
Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98, 1346413471.Google Scholar
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 175.CrossRefGoogle ScholarPubMed
Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Chicago: University of Chicago Press.Google Scholar
Luzzatti, C., Mondini, S., & Semenza, C. (2001). Lexical representation and processing of morphologically complex words: Evidence from the reading performance of an Italian agrammatic patient. Brain and Language, 79, 345359.Google Scholar
Luzzatti, C., Raggi, R., Zonca, G., Pistarini, C., Contardi, A., & Pinna, G. D. (2002). Verb–noun double dissociation in aphasic lexical impairments: The role of word frequency and imageability. Brain and Language, 81, 432444.Google Scholar
Luzzatti, C., Willmes, K., & de Bleser, R. (1996). Aachener Aphasie Test: Versione Italiana (2nd ed.). Firenze: Organizzazioni Speciali.Google Scholar
Marelli, M., Aggujaro, S., Molteni, F., & Luzzatti, C. (2009). Effetti semantici e morfologici nella dislessia profonda. Europa Medicophysica, 45, 14.Google Scholar
Marelli, M., Aggujaro, S., Molteni, F., & Luzzatti, C. (2012). The multiple-lemma representation of Italian compound nouns: A single case study of deep dyslexia. Neuropsychologia, 50, 852861.Google Scholar
Marshall, J. C., & Newcombe, F. (1973). Patterns of paralexia: A psycholinguistic approach. Journal of Psycholinguistic Research, 2, 175199.Google Scholar
McAllister, T., Bachrach, A., Waters, G., Michaud, J., & Caplan, D. (2009). Production and comprehension of unaccusatives in aphasia. Aphasiology, 23, 9891004.CrossRefGoogle Scholar
Newcombe, F., & Marshall, J. C. (1980). Response monitoring and response blocking in deep dyslexia. In Coltheart, M., Patterson, K., & Marshall, J. C. (Eds.), Deep dyslexia. London: Routledge & Kegan Paul.Google Scholar
Nolan, K. A., & Caramazza, A. (1982). Modality-independent impairments in word-processing in a deep dyslexic patient. Brain and Language, 16, 237264.Google Scholar
Patterson, K. E., & Marcel, A. J. (1977). Aphasia, dyslexia and the phonological coding of written words. Quarterly Journal of Experimental Psychology, 29, 307318.Google Scholar
Perlmutter, D. (1978). Impersonal passive and the unaccusative hypothesis. Proceedings of the 4th Annual Meeting of the Berkeley Linguistic Society, pp. 157190. Berkeley: University of California–Berkeley, Berkeley Linguistic Society.Google Scholar
Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology, 10, 377500.Google Scholar
Core, R Team (2012). R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/Google Scholar
Rapp, B., & Caramazza, A. (2002). Selective difficulties with spoken nouns and written verbs: A single case study. Journal of Neurolinguistics, 15, 373402.Google Scholar
Saffran, E. M., Bogyo, L. C., Schwartz, M. F., & Marin, O. S. M. (1980). Does deep dyslexia reflect right hemisphere reading? In Coltheart, M., Patterson, K., & Marshall, J. C. (Eds.), Deep dyslexia. London: Routledge & Kegan Paul.Google ScholarPubMed
Sanchez-Alonso, S., Martinez-Ferreiro, S., & Bastiaanse, R. (2011). Clitics in Spanish agrammatic aphasia: A study of the production of unaccusative, reflexive and object clitics. In Hendrickx, I., Devi, S. Lalitha, Branco, A., & Mitkov, R. (Eds.), Lecture notes in computer science: Vol. 7099. Anaphora processing and applications (pp. 184197). Berlin: Springer–Verlag.Google Scholar
Schwartz, M. F., Saffran, E. M., & Marin, O. S. M. (1980). Fractionating the reading process in dementia: Evidence for word-specific print-to-sound associations. In Coltheart, M., Patterson, K., & Marshall, J. C. (Eds.), Deep dyslexia. London: Routledge & Kegan Paul.Google Scholar
Shallice, T., & Warrington, E. (1980). Single and multiple component central dyslexic syndromes. In Coltheart, M., Patterson, K., & Marshall, J. C. (Eds.), Deep dyslexia. London: Routledge & Kegan Paul.Google Scholar
Shapiro, L. P., Zurif, E., & Grimshaw, J. (1987). Sentence processing and the mental representation of verbs. Cognition, 27, 219246.Google Scholar
Shapiro, L. P., & Levine, B. A. (1990). Verb processing during sentence comprehension in aphasia. Brain and Language, 38, 2147.Google Scholar
Shetreet, E., & Friedmann, N. (2012). Stretched, jumped and fell: An fMRI investigation of reflexive verbs and other intransitives. NeuroImage, 60, 18001806.Google Scholar
Shetreet, E., Friedmann, N., & Hadar, U. (2009). The neural correlates of linguistics distinctions: Unaccusative and unergative verbs. Journal of Cognitive Neuroscience, 22, 23062315.CrossRefGoogle Scholar
Shetreet, E., Palti, D., Friedmann, N., & Hadar, U. (2007). Cortical representation of verb processing in sentence comprehension: Number of complements, subcategorization and thematic frames. Cerebral Cortex, 17, 19581969.Google Scholar
Thompson, C. K. (2003). Unaccusative verb production in agrammatic aphasia: The argument structure complexity hypothesis. Journal of Neurolinguistics, 16, 151167.CrossRefGoogle ScholarPubMed
Thompson, C. K., Bonakdarpour, B., & Fix, S. (2010). Neural mechanisms of verb argument structure processing in agrammatic aphasic and healthy age-matched listeners. Journal of Cognitive Neuroscience, 22, 19932011.Google Scholar
Thompson, C. K., Bonakdarpour, B., Fix, S., Blumenfeld, H., Parrish, T., & Gitelman, D. (2007). Neural correlates of verb argument structure processing: An fMRI study. Journal of Cognitive Neuroscience, 19, 17571763.Google Scholar
Thompson, C. K., Lange, K. L., Schneider, S. L., & Shapiro, L. P. (1997). Agrammatic and non-brain damaged subjects’ verb and verb argument structure production. Aphasiology, 11, 473490.Google Scholar
Toraldo, A., Cattani, B., Zonca, G., Saletta, P., & Luzzatti, C. (2006). Reading disorders in a language with shallow orthography: A multiple single-case study in Italian. Aphasiology, 20, 823850.Google Scholar