Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T17:21:06.249Z Has data issue: false hasContentIssue false

Moving toward a neuroplasticity view of bilingualism, executive control, and aging

Published online by Cambridge University Press:  19 August 2014

SHARI BAUM*
Affiliation:
McGill University
DEBRA TITONE*
Affiliation:
McGill University
*
ADDRESS FOR CORRESPONDENCE Shari Baum or Debra Titone, Centre for Research on Brain, Language & Music, McGill University, 3640 de la Montagne, Montreal, QC H3G 2A8, Canada. E-mail: shari.baum@mcgill.ca or debra.titone@mcgill.ca
ADDRESS FOR CORRESPONDENCE Shari Baum or Debra Titone, Centre for Research on Brain, Language & Music, McGill University, 3640 de la Montagne, Montreal, QC H3G 2A8, Canada. E-mail: shari.baum@mcgill.ca or debra.titone@mcgill.ca

Abstract

Normal aging is an inevitable race between increasing knowledge and decreasing cognitive capacity. Crucial to understanding and promoting successful aging is determining which of these factors dominates for particular neurocognitive functions. Here, we focus on the human capacity for language, for which healthy older adults are simultaneously advantaged and disadvantaged. In recent years, a more hopeful view of cognitive aging has emerged from work suggesting that age-related declines in executive control functions are buffered by life-long bilingualism. In this paper, we selectively review what is currently known and unknown about bilingualism, executive control, and aging. Our ultimate goal is to advance the views that these issues should be reframed as a specific instance of neuroplasticity more generally and, in particular, that researchers should embrace the individual variability among bilinguals by adopting experimental and statistical approaches that respect the complexity of the questions addressed. In what follows, we set out the theoretical assumptions and empirical support of the bilingual advantages perspective, review what we know about language, cognitive control, and aging generally, and then highlight several of the relatively few studies that have investigated bilingual language processing in older adults, either on their own or in comparison with monolingual older adults. We conclude with several recommendations for how the field ought to proceed to achieve a more multifactorial view of bilingualism that emphasizes the notion of neuroplasticity over that of simple bilingual versus monolingual group comparisons.

Type
Keynote Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abada, S. H., Baum, S. R., & Titone, D. (2008). The effects of contextual strength on phonetic identification in younger and older listeners. Experimental Aging Research, 34, 232250. doi:10.1080/03610730802070183 CrossRefGoogle ScholarPubMed
Abutalebi, J., Annoni, J. M., Zimine, I., Pegna, A. J., Seghier, M. L., Lee-Jahnke, H., et al. (2008). Language control and lexical competition in bilinguals: An event-related fMRI study. Cerebral Cortex, 18, 14961505.Google Scholar
Abutalebi, J., & Green, D. W. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.Google Scholar
Abutalebi, J., & Green, D. W. (2008). Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23, 557582. doi:10.1080/01690960801920602 Google Scholar
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and Language, 109, 5154. doi:10.1016/j.bandl.2009.04.001 Google Scholar
Adesope, O. O., Lavin, T., Thompson, T., & Ungerleider, C. (2010). A systematic review and meta-analysis of the cognitive correlates of bilingualism. Review of Educational Research, 80, 207245. doi:10.3102/0034654310368803 Google Scholar
Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38, 419439.Google Scholar
Aydin, K., Ucar, A., Oguz, K. K., Okur, K. K., Agayev, A., Una, Z., et al. (2007). Increased gray matter density in the parietal cortex of mathematicians: A voxel-based morphometry study. American Journal of Neuroradiology, 28, 18591864. doi:10.3174/ajnr.A0696 Google Scholar
Baayen, H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255278. doi:10.1016/J.Jml.2012.11.001 CrossRefGoogle ScholarPubMed
Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., & Hensch, T. K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience, 30, 1496414971. doi:10.1523/jneurosci.4812–10.2010 Google Scholar
Ben-David, B. M., Chambers, C. G., Daneman, M., Pichora-Fuller, M. K., Reingold, E. M., & Schneider, B. A. (2011). Effects of aging and noise on real-time spoken word recognition: Evidence from eye movements. Journal of Speech Language and Hearing Research, 54, 243262. doi:10.1044/1092-4388(2010/09-0233) CrossRefGoogle ScholarPubMed
Ben-Zeev, S. (1977). Influence of bilingualism on cognitive strategy and cognitive development. Child Development, 48, 10091018. doi:10.1111/j.1467-8624.1977.tb01260.x CrossRefGoogle Scholar
Berken, J., Mok, K., Chen, J.-K., Gracco, V., Baum, S., & Klein, D. (2012). Age of second language acquisition affects cortical thickness in the left dorsolateral prefrontal cortex. Paper presented at the Society for the Neurobiology of Language, San Sebastián, Spain.Google Scholar
Bialystok, E. (1986). Factors in growth of linguistic awareness. Child Development, 57, 498510. doi:10.1111/j.1467-8624.1986.tb00048.x CrossRefGoogle Scholar
Bialystok, E. (1988). Levels of bilingualism and levels of linguistic awareness. Developmental Psychology, 24, 560567. doi:10.1037/0012-1649.24.4.560 Google Scholar
Bialystok, E. (2001). Bilingualism in development: Language, literacy, and cognition. New York: Cambridge University Press.Google Scholar
Bialystok, E. (2006). Effect of bilingualism and computer video game experience on the Simon task. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 60, 6879. doi:10.1037/Cjep2006008 CrossRefGoogle ScholarPubMed
Bialystok, E. (2009). Claiming evidence from non-evidence: A reply to Morton and Harper. Developmental Science, 12, 499501. doi:10.1111/J.1467-7687.2009.00868.X Google Scholar
Bialystok, E., & Craik, F. I. M. (2010). Cognitive and linguistic processing in the bilingual mind. Current Directions in Psychological. Science, 19, 1923.Google Scholar
Bialystok, E., Craik, F. I. M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464. doi:10.1016/J.Neuropsychologia.2006.10.009 Google Scholar
Bialystok, E., Craik, F. I. M., Grady, C., Chau, W., Ishii, R., Gunji, A., et al. (2005). Effect of bilingualism on cognitive control in the Simon task: Evidence from MEG. NeuroImage, 24, 4049.Google Scholar
Bialystok, E., Craik, F. I. M., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 19, 290303. doi:10.1037/0882-7974.19.2.290 Google Scholar
Bialystok, E., Craik, F. I. M., & Luk, G. (2008a). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 859873. doi:10.1037/0278-7393.34.4.859 Google Scholar
Bialystok, E., Craik, F. I. M., & Luk, G. (2008b). Lexical access in bilinguals: Effects of vocabulary size and executive control. Journal of Neurolinguistics, 21, 522538. doi:10.1016/j.jneuroling.2007.07.001 CrossRefGoogle Scholar
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16, 240250. doi:10.1016/j.tics.2012.03.001 Google Scholar
Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35, 565574. doi:10.1037/a0012735 Google ScholarPubMed
Bialystok, E., Luk, G., Peets, K. F., & Yang, S. J. (2010). Receptive vocabulary differences in monolingual and bilingual children. Bilingualism: Language and Cognition, 13, 525531.CrossRefGoogle ScholarPubMed
Bialystok, E., & Majumder, S. (1998). The relationship between bilingualism and the development of cognitive processes in problem solving. Applied Psycholinguistics, 19, 6985.Google Scholar
Bialystok, E., & Viswanathan, M. (2009). Components of executive control with advantages for bilingual children in two cultures. Cognition, 112, 494500. doi:10.1016/j.cognition.2009.06.014 CrossRefGoogle ScholarPubMed
Blumenfeld, H. K., & Marian, V. (2007). Constraints on parallel activation in bilingual spoken language processing: Examining proficiency and lexical status using eye-tracking. Language and Cognitive Processes, 22, 633660.CrossRefGoogle Scholar
Blumenfeld, H. K., & Marian, V. (2011). Bilingualism influences inhibitory control in auditory comprehension. Cognition, 118, 245257. doi:10.1016/j.cognition.2010.10.012 Google Scholar
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106113. doi:10.1016/j.tics.2011.12.010 CrossRefGoogle ScholarPubMed
Broersma, M., & Cutler, A. (2011). Competition dynamics of second-language listening. Quarterly Journal of Experimental Psychology, 64, 7495.Google Scholar
Burke, D. M. (1997). Language, aging, and inhibitory deficits: Evaluation of a theory. Journal of Gerontology, 52B, P254P264.Google Scholar
Burke, D. M., & Shafto, M. A. (2004). Aging and language production. Current Directions in Psychological Science, 13, 2124.CrossRefGoogle ScholarPubMed
Cabeza, R., Anderson, N., Locantore, J., & McIntosh, A. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17, 13941402.Google Scholar
Campbell, J. I. D. (2005). Asymmetrical language switching costs in Chinese–English bilinguals’ number naming and simple arithmetic. Bilingualism: Language and Cognition, 8, 8591. doi:10.1017/S136672890400207x Google Scholar
Canseco-Gonzalez, E., Brehm, L., Brick, C., Brown-Schmidt, S., Fischer, K., & Wagner, K. (2010). Carpet or Cárcel: The effect of age of acquisition and language mode on bilingual lexical access. Language and Cognitive Processes, 25, 669705.Google Scholar
Carlson, S. M., & Meltzoff, A. N. (2008). Bilingual experience and executive functioning in young children. Developmental Science, 11, 282298. doi:10.1111/J.1467-7687.2008.00675.X Google Scholar
Chakravarty, M. M., & Vuust, P. (2009). Musical morphology. Neurosciences and Music III: Disorders and Plasticity, 1169, 7983. doi:10.1111/J.1749-6632.2009.04780.X Google Scholar
Chee, M. W. L. (2006). Dissociating language and word meaning in the bilingual brain. Trends in Cognitive Sciences, 10, 527529. doi:10.1016/J.Tics.2006.09.009 CrossRefGoogle ScholarPubMed
Chee, M. W. L., Soon, C. S., Lee, H. L., & Pallier, C. (2004). Left insula activation: A marker for language attainment in bilinguals. Proceedings of the National Academy of Sciences, 101, 1526515270. doi:10.1073/pnas.0403703101 CrossRefGoogle ScholarPubMed
Chertkow, H., Whitehead, V., Phillips, N., Wolfson, C., Atherton, J., & Bergman, H. (2010). Multilingualism (but not always bilingualism) delays the onset of Alzheimer disease: Evidence from a bilingual community. Alzheimer Disease & Associated Disorders, 24, 118125.Google Scholar
Christoffels, I. K. (2006). Listening while talking: The retention of prose under articulatory suppression in relation to simultaneous interpreting. European Journal of Cognitive Psychology, 18, 206220.Google Scholar
Christoffels, I. K., & de Groot, A. M. B. (2004). Components of simultaneous interpreting: A comparison with shadowing and paraphrasing. Bilingualism: Language and Cognition, 7, 114.Google Scholar
Christoffels, I. K., Firk, C., & Schiller, N. O. (2007). Bilingual language control: An event-related brain potential study. Brain Research, 1147, 192208. doi:10.1016/J.Brainres.2007.01.137 Google Scholar
Colzato, L. S., Bajo, M. T., van den Wildenberg, W., Paolieri, D., Nieuwenhuis, S., La Heij, W., et al. (2008). How does bilingualism improve executive control? A comparison of active and reactive inhibition mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 302312. doi:10.1037/0278-7393.34.2.302 Google Scholar
Connine, C. M., Blasko, D. G., & Titone, D. (1993). Do the beginnings of spoken words have a special status in auditory word recognition? Journal of Memory and Language, 32, 193210.Google Scholar
Connine, C. M., Blasko, D. G., & Wang, J. (1994). Vertical similarity in spoken word recognition: Multiple lexical activation, individual differences, and the role of sentence context. Perception & Psychophysics, 56, 624636.Google Scholar
Connine, C., Titone, D., & Blasko, D. (1991, November). Do the beginnings of auditory words have a special status? Poster session presented at the 32nd annual meeting of the Psychonomic Society, San Francisco, CA.Google Scholar
Connine, C. M., Titone, D., Deelman, T., & Blasko, D. (1997). Similarity mapping in spoken word recognition. Journal of Memory and Language, 37, 463480.Google Scholar
Copeland, D. E., & Radvansky, G. A. (2007). Aging and integrating spatial mental models. Psychology and Aging, 22, 569579. doi:10.1037/0882-7974.22.3.569 Google Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don't. Cognition, 113, 135149. doi:10.1016/J.Cognition.2009.08.001 Google Scholar
Costa, A., Hernández, M., & Sebastián-Gallés, N. (2008). Bilingualism aids conflict resolution: Evidence from the ANT task. Cognition, 106, 5986. doi:10.1016/J.Cognition.2006.12.013 Google Scholar
Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, 50, 491511.Google Scholar
Craik, F. I. M., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease. Neurology, 75, 17261729.Google Scholar
Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., et al. (2006). Language control in the bilingual brain. Science, 312, 15371540.CrossRefGoogle ScholarPubMed
Cummine, J., & Boliek, C. A. (2013). Understanding white matter integrity stability for bilinguals on language status and reading performance. Brain Structure and Function, 218, 595601. doi:10.1007/s00429-012-0466-6 CrossRefGoogle ScholarPubMed
Darowski, E. S., Helder, E., Zacks, R. T., Hasher, L., & Hambrick, D. Z. (2008). Age-related differences in cognition: The role of distraction control. Neuropsychology, 22, 638644. doi:10.1037/0894-4105.22.5.638 CrossRefGoogle ScholarPubMed
de Groot, A. M. B. (2011). Language and cognition in bilinguals and multilinguals: An introduction. New York: Psychology Press.Google Scholar
de Groot, A. M. B., & Christoffels, I. K. (2006). Language control in bilinguals: Monolingual tasks and simultaneous interpreting. Bilingualism: Language and Cognition, 9, 189201. doi:10.1017/S1366728906002537 Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., et al. (1997). Anatomical variability in the cortical representation of first and second language. NeuroReport, 8, 38093815. doi:10.1097/00001756-199712010–00030 Google Scholar
Dijkstra, T. (2005). Bilingual visual word recognition and lexical access. In Kroll, J. F. & de Groot, A. M. B. (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 179201). New York: Oxford University Press.Google Scholar
Dijkstra, T., Miwa, K., Brummelhuis, B., Sappelli, M., & Baayen, H. (2010). How cross-language similarity and task demands affect cognate recognition. Journal of Memory and Language, 62, 284301. doi:10.1016/J.Jml.2009.12.003 Google Scholar
Dijkstra, T., Van Jaarsveld, H., & Ten Brinke, S. (1998). Interlingual homograph recognition: Effects of task demands and language intermixing. Bilingualism: Language and Cognition, 1, 5166.Google Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311312. doi:10.1038/427311a Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305307. doi:10.1126/science.270.5234.305 Google Scholar
Elmer, S., Meyer, M., & Jancke, L. (2010). Simultaneous interpreters as a model for neuronal adaptation in the domain of language processing. Brain Research, 1317, 147156. doi:10.1016/J.Brainres.2009.12.052 Google Scholar
Farias, S., Chand, V., Bonnici, L., Baynes, K., Harvey, D., Mungas, D., et al. (2012). Idea density measured in late life predicts subsequent cognitive trajectories: Implications for the measurement of cognitive reserve. Journal of Gerontology, 67B, 677686.Google Scholar
Favreau, M., & Segalowitz, N. S. (1983). Automatic and controlled processes in the first- and second-language reading of fluent bilinguals. Memory & Cognition, 11, 565574.Google Scholar
Fernandes, M. A., Craik, F., Bialystok, E., & Kreuger, S. (2007). Effects of bilingualism, aging, and semantic relatedness on memory under divided attention. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 61, 128141. doi:10.1037/Cjep2007014 Google Scholar
Festman, J., & Munte, T. F. (2012). Cognitive control in Russian–German bilinguals. Frontiers in Psychology, 3, 1664–1078.Google Scholar
Festman, J., Rodriguez-Fornells, A., & Munte, T. F. (2010). Individual differences in control of language interference in late bilinguals are mainly related to general executive abilities. Behavioral and Brain Functions, 6:5. doi:10.1186/1744-9081-6-5 Google Scholar
Festman, Y., & Braun, J. (2012). Feature-based attention spreads preferentially in an object-specific manner. Vision Research, 54, 3138. doi:10.1016/j.visres.2011.12.003 Google Scholar
Galambos, S. J., & Goldin-Meadow, S. (1990). The effects of learning two languages on levels of metalinguistic awareness. Cognition, 34, 156. doi:10.1016/0010-0277(90)90030-n Google Scholar
Galambos, S. J., & Hakuta, K. (1988). Subject-specific characteristics of metalinguistic awareness in bilingual children. Applied Psycholinguistics, 9, 141162. doi:10.1017/s0142716400006780 Google Scholar
Garrett, D. D., MacDonald, S. W. S., & Craik, F. I. M. (2012). Intraindividual reaction time variability is malleable: Feedback- and education-related reductions in variability with age. Frontiers in Human Neuroscience, 6, 110.Google Scholar
Genesee, F. (2009). Early childhood bilingualism: Perils and possibilities. Journal of Applied Research on Learning, 2, 121.Google Scholar
Genesee, F. (2010). Dual language acquisition in preschool children. In Garcia, E. E. & Frede, E. (Eds.), Young English language learners (pp. 5979). New York: Teachers College Press.Google Scholar
Goetz, P. J. (2003). The effects of bilingualism on theory of mind development. Bilingualism: Language and Cognition, 6, 115.Google Scholar
Gold, B., Kim, C., Johnson, N., Kryscio, R., & Smith, C. (2013). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33, 387396.Google Scholar
Gollan, T. H., Fennema-Notestine, C., Montoya, R., & Jernigan, T. (2007). The bilingual effect on Boston Naming Test performance. Journal of the International Neuropsychological Society, 13, 197208.Google Scholar
Gollan, T. H., & Goldrick, M. (2012). Does bilingualism twist your tongue? Cognition, 125, 491497. doi:10.1016/j.cognition.2012.08.002 Google Scholar
Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58, 787814. doi:10.1016/J.Jml.2007.07.001 Google Scholar
Gollan, T. H., Montoya, R., Fennema-Notestine, C., & Morris, S. (2005). Bilingualism affects picture naming but not picture classification. Memory & Cognition, 33, 12201234.Google Scholar
Gollan, T. H., Montoya, R., & Werner, G. (2002). Semantic and letter fluency in Spanish–English bilinguals. Neuropsychology, 16, 562576.Google Scholar
Gollan, T. H., Salmon, D. P., Montoya, R. I., & Galasko, D. R. (2011). Degree of bilingualism predicts age of diagnosis of Alzheimer's disease in low-education but not in highly educated Hispanics. Neuropsychologia, 49, 38263830. doi:10.1016/j.neuropsychologia.2011.09.041 CrossRefGoogle ScholarPubMed
Gollan, T. H., & Silverberg, N. (2001). Tip-of-the-tongue states in Hebrew–English bilinguals. Bilingualism: Language and Cognition, 4, 6384.Google Scholar
Gollan, T. H., Slattery, T. J., Goldenberg, D., Van Assche, E., Duyck, W., & Rayner, K. (2011). Frequency drives lexical access in reading but not in speaking: The frequency-lag hypothesis. Journal of Experimental Psychology: General, 140, 186209.Google Scholar
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 2136. doi:10.1006/nimg.2001.0786 Google Scholar
Grady, C. L., Bernstein, L. J., Beig, S., & Siegenthaler, A. L. (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging, 17, 723.CrossRefGoogle ScholarPubMed
Grady, C. L., McIntosh, A. R., & Craik, F. I. M. (2003). Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus, 13, 572586. doi:10.1002/Hipo.10114 Google Scholar
Grady, C. L., Protzner, A. B., Kovacevic, N., Strother, S. C., Afshin-Pour, B., Wojtowicz, M., et al. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20, 14321447. doi:10.1093/cercor/bhp207 Google Scholar
Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., & Winocur, G. (2006). Age-related changes in brain activity across the adult life span. Journal of Cognitive Neuroscience, 18, 227241. doi:10.1162/089892906775783705 Google Scholar
Green, A., Nicholson, N. S., Vaid, J., White, N., & Steiner, R. (1990). Hemispheric involvement in shadowing vs. interpretation: A time-sharing study of simultaneous interpreters with matched bilingual and monolingual controls. Brain and Language, 39, 107133.Google Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.Google Scholar
Green, D. W. (2011). Language control in different contexts: The behavioral ecology of bilingual speakers. Frontiers in Psychology, 2, 103. doi:10.3389/fpsyg.2011.00103 Google Scholar
Guo, T. M., Liu, H. Y., Misra, M., & Kroll, J. F. (2011). Local and global inhibition in bilingual word production: fMRI evidence from Chinese–English bilinguals. NeuroImage, 56, 23002309. doi:10.1016/j.neuroimage.2011.03.049 Google Scholar
Hagoort, P. (1989). Processing of lexical ambiguities: A comment on Milberg, Blumstein, and Dworetzky (1987). Brain & Language, 36, 335348.Google Scholar
Hasher, L., Lustig, C., & Zacks, R. T. (2007). Inhibitory mechanisms and the control of attention. New York: Oxford University Press.Google Scholar
Hedden, T. & Gabrieli, J. D. E. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5, 87-U12. doi:10.1038/nrn1323 Google Scholar
Hedden, T. & Gabrieli, J. D. E. (2010). Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. NeuroImage, 51, 421431. doi:10.1016/j.neuroimage.2010.01.089 Google Scholar
Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 486502. doi:10.1016/j.neuron.2012.10.011 Google Scholar
Hernandez, A. E. (2009). Language switching in the bilingual brain: What's next? Brain and Language, 109, 133140. doi:10.1016/J.Bandl.2008.12.005 Google Scholar
Hernandez, A. E., & Kohnert, K. (1999). Aging and language switching in bilinguals. Aging, Neuropsychology and Cognition, 6, 6983.Google Scholar
Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133, 638650. doi:10.1037/0033-2909.133.4.638 Google Scholar
Hernandez, A. E., & Meschyan, G. (2006). Executive function is necessary to enhance lexical processing in a less proficient L2: Evidence from fMR1 during picture naming. Bilingualism: Language and Cognition, 9, 177188. doi:10.1017/S1366728906002525 Google Scholar
Hernández, M., Costa, A., Fuentes, L. J., Vivas, A. B., & Sebastián-Gallés, N. (2010). The impact of bilingualism on the executive control and orienting networks of attention. Bilingualism: Language and Cognition, 13, 315325. doi:10.1017/S1366728909990010 Google Scholar
Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin & Review, 18, 625658.Google Scholar
Hussey, E. K., & Novick, J. M. (2012). The benefits of executive control training and the implications for language processing. Frontiers in Psychology, 3, 158. doi:10.3389/fpsyg.2012.00158 Google Scholar
Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: When less is better than more. Journal of Neuroscience, 27, 1302813032. doi:10.1523/Jneurosci.3039-07.2007 Google Scholar
Iacono, D., Markesbery, W., Gross, M., Pletnikova, O., Rudow, G., Zandi, P., et al. (2009). The Nun Study: Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology, 73, 665673.CrossRefGoogle ScholarPubMed
Ivanova, I., & Costa, A. (2008). Does bilingualism hamper lexical access in speech production? Acta Psychologica, 127, 277288.Google Scholar
Jones, S., Nyberg, L., Sandblom, J., Stigsdotter Neely, A., Ingvar, M., Petersson, K. M., et al. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. Neuroscience & Biobehavioral Reviews, 30, 846871.Google Scholar
Kavé, G., Eyal, N., Shorek, A., & Cohen-Mansfield, J. (2008). Multilingualism and cognitive state in the oldest old. Psychology and Aging, 23, 7078.Google Scholar
Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 10891102.Google Scholar
Kennedy, K. M., & Raz, N. (2009). Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 1297, 4156. doi:10.1016/J.Brainres.2009.08.058 CrossRefGoogle ScholarPubMed
Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., et al. (2010). Control and interference in task switching: A review. Psychological Bulletin, 136, 849874. doi:10.1037/A0019842 Google Scholar
Kim, K. H. S., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171174.Google Scholar
Kjelgaard, M. M., Titone, D. A., & Wingfield, A. (1999). The influence of prosodic structure on the interpretation of temporary syntactic ambiguity by young and elderly listeners. Experimental Aging Research, 25, 187207.Google Scholar
Klein, D., Berken, J., Chen, J.-K., Gracco, V., Baum, S., & Mok, K. (2012). Gray matter density differences in the left putamen correlate with age of second language acquisition: A voxel-based morphometry study. Paper presented at the Society for the Neurobiology of Language, San Sebastián, Spain.Google Scholar
Klein, D., Milner, B., Zatorre, R. J., Meyer, E., & Evans, a. C. (1995). The neural substrates underlying word generation: A bilingual functional-imaging study. Proceedings of the National Academy of Sciences of the United States of America, 92, 28992903.Google Scholar
Klein, D., Zatorre, R. J., Chen, J. K., Milner, B., Crane, J., Belin, P., et al. (2006). Bilingual brain organization: A functional magnetic resonance adaptation study. NeuroImage, 31, 366375. doi:10.1016/J.NeuroImage.2005.12.012 Google Scholar
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive. Sciences, 14, 317324.Google Scholar
Kohnert, K., Hernandez, A., & Bates, E. (1998). Bilingual performance on the Boston Naming Test: Preliminary norms in Spanish and English. Brain and Language, 65, 422440.Google Scholar
Kousaie, S., & Phillips, N. (2010). Age-related differences in interlingual priming: A behavioural and electrophysiological investigation. Aging, Neuropsychology and Cognition, 18, 2255.Google Scholar
Kousaie, S., & Phillips, N. A. (2012). Ageing and bilingualism: Absence of a “bilingual advantage” in Stroop interference in a nonimmigrant sample. Quarterly Journal of Experimental Psychology, 65, 356369. doi:10.1080/17470218.2011.604788 Google Scholar
Kovács, A. M. (2009). Early bilingualism enhances mechanisms of false-belief reasoning. Developmental Science, 12, 4854. doi:10.1111/j.1467-7687.2008.00742.X Google Scholar
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11, 599605.Google Scholar
Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences, 109, 78777881. doi:10.1073/pnas.1201575109 Google Scholar
Kroll, J. F., & Bialystok, E. (2013). Understanding the consequences of bilingualism for language processing and cognition. Journal of Cognitive Psychology, 25, 497514.Google Scholar
Kroll, J. F., Bobb, S. C., Misra, M., & Guo, T. (2008). Language selection in bilingual speech: Evidence for inhibitory processes. Acta Psychologica, 128, 416430. doi:10.1016/j.actpsy.2008.02.001 Google Scholar
Kroll, J. F., Dussias, P. E., Bogulski, C. A., & Valdes Kroff, J. R. (2012). Juggling two languages in one mind: What bilinguals tell us about language processing and its consequences for cognition. In Ross, B. (Ed.), The psychology of learning and motivation (Vol. 56, pp. 145184). San Diego, CA: Academic Press.Google Scholar
Kroll, J. F., Van Hell, J. G., Tokowicz, N., & Green, D. W. (2010). The Revised Hierarchical Model: A critical review and assessment. Bilingualism: Language and Cognition, 13, 373381.Google Scholar
Lee, C., & Federmeier, K. D. (2011). Differential age effects on lexical ambiguity resolution mechanisms. Psychophysiology, 48, 960972. doi:10.1111/j.1469-8986.2010.01158.x Google Scholar
Lee, C., & Federmeier, K. D. (2012). Ambiguity's aftermath: How age differences in resolving lexical ambiguity affect subsequent comprehension. Neuropsychologia, 50, 869879. doi:10.1016/j.neuropsychologia.2012.01.027 Google Scholar
Libben, M. R., & Titone, D. A. (2009). Bilingual lexical access in context: Evidence from eye movements during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 381390. doi:10.1037/A0014875 Google Scholar
Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33, 827840.Google Scholar
Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. Ear and Hearing, 19, 136.Google Scholar
Luders, E., Toga, A. W., Lepore, N., & Gaser, C. (2009). The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. NeuroImage, 45, 672678. doi:10.1016/j.neuroimage.2008.12.061 Google Scholar
Luk, G., Anderson, J. A. E., Craik, F. I. M., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74, 347357.Google Scholar
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31, 1680816813.Google Scholar
Luo, L., Luk, G., & Bialystok, E. (2010). Effect of language proficiency and executive control on verbal fluency performance in bilinguals. Cognition, 114, 2941. doi:10.1016/j.cognition.2009.08.014 Google Scholar
Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19, 504522.Google Scholar
Macizo, P., & Bajo, M. T. (2006). Reading for repetition and reading for translation: Do they involve the same processes? Cognition, 99, 134.Google Scholar
Macizo, P., Bajo, T., & Martin, M. C. (2010). Inhibitory processes in bilingual language comprehension: Evidence from Spanish–English interlexical homographs. Journal of Memory and Language, 63, 232244. doi:10.1016/j.jml.2010.04.002 Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., et al., C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 43984403. doi:10.1073/pnas.070039597 Google Scholar
Marian, V., & Spivey, M. (1999). Activation of Russian and English cohorts during bilingual spoken word recognition. In Hahn, M. & Stones, S. C. (Eds.), Proceedings of the Twenty-First Annual Conference of the Cognitive Science Society (pp. 349354). Mahwah, NJ: Erlbaum.Google Scholar
Marian, V., & Spivey, M. (2003a). Comparing bilingual and monolingual processing of competing lexical items. Applied Psycholinguistics, 24, 173193.Google Scholar
Marian, V., & Spivey, M. (2003b). Competing activation in bilingual language processing: Within- and between-language competition. Bilingualism: Language and Cognition, 6, 97115.Google Scholar
Martensson, J., Eriksson, J., Bodammer, N. C., Lindgren, M., Johansson, M., Nyberg, L., et al. (2012). Growth of language-related brain areas after foreign language learning. NeuroImage, 63, 240244. doi:10.1016/j.neuroimage.2012.06.043 Google Scholar
Martin, S, Brouillet, D, Guerdoux, E, & Tarrago, R. (2006). Inhibition and resource capacity during normal aging: A confrontation of the dorsal-ventral and frontal models in a modified version of negative priming. Encephale: Revue de Psychiatrie Clinique Biologique et Therapeutique, 32, 253262.Google Scholar
Martin, M., Macizo, P., & Bajo, T. (2010). Time course of inhibitory processes in bilingual language processing. British Journal of Psychology, 101, 679693. doi:10.1348/000712609x480571Google Scholar
Martin-Rhee, M. M., & Bialystok, E. (2008). The development of two types of inhibitory control in monolingual and bilingual children. Bilingualism: Language and Cognition, 11, 8193. doi:10.1017/S1366728907003227 CrossRefGoogle Scholar
May, C. P., Zacks, R. T., Hasher, L., & Multhaup, K. S. (1999). Inhibition in the processing of garden-path sentences. Psychology and Aging, 14, 304313.Google Scholar
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186.Google Scholar
McGinnis, S. M., Brickhouse, M., Pascual, B., & Dickerson, B. C. (2011). Age-related changes in the thickness of cortical zones in humans. Brain Topography, 24, 279291. doi:10.1007/s10548-011-0198-6 Google Scholar
McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143157. doi:10.1006/Nimg.1996.0016 Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O'Doherty, J., Ashburner, J., Frackowiak, R. S., et al. (2004). Neurolinguistics: Structural plasticity in the bilingual brain. Nature, 431, 757.Google Scholar
Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1, 105113.Google Scholar
Mercier, J., Pivneva, I., & Titone, D. (2014). Individual differences in inhibitory control relate to bilingual spoken word processing. Bilingualism: Language and Cognition, 17, 89117 doi:10.1017/S1366728913000084 Google Scholar
Mercier, J., Pivneva, I., & Titone, D. (in press). The role of prior language context on bilingual spoken word processing: Evidence from the visual world task. Bilingualism: Language and Cognition.Google Scholar
Mercier, J., Sudarshan, A., Pivneva, I., Baum, S., & Titone, D. (2014). Spoken word processing in bilingual older adults. Manuscript submitted for publication.Google Scholar
Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40, 2540.Google Scholar
Meyer, A. M., & Federmeier, K. D. (2010). Event-related potentials reveal the effects of aging on meaning selection and revision. Psychophysiology, 47, 673686. doi:10.1111/j.1469-8986.2010.00983.x Google Scholar
Michael, E. B., & Gollan, T. H. (2005). Being and becoming bilingual: Individual differences and consequences for language production. In Kroll, J. F. & de Groot, A. M. B. (Eds.), The handbook of bilingualism: Psycholinguistic approaches (pp. 389407). New York: Oxford University Press.Google Scholar
Milberg, W., Blumstein, S., & Dworetzky, B. (1987). Processing of lexical ambiguities in aphasia. Brain & Language, 31, 138150.Google Scholar
Misra, M., Guo, T. M., Bobb, S. C., & Kroll, J. F. (2012). When bilinguals choose a single word to speak: Electrophysiological evidence for inhibition of the native language. Journal of Memory and Language, 67, 224237. doi:10.1016/J.Jml.2012.05.001 Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814. doi:10.1177/0963721411429458 Google Scholar
Mohades, S., Struys, E., Van Schuerbeek, P., Mondt, K., van de Craen, P. & Luypaert, R. (2012). DTI reveals structural differences in white matter tracts between bilingual and monolingual children. Brain Research, 1435, 7280.Google Scholar
Morton, J. B., & Harper, S. N. (2007). What did Simon say? Revisiting the bilingual advantage. Developmental Science, 10, 719726. doi:10.1111/J.1467-7687.2007.00623.X Google Scholar
Murphy, D. R., Daneman, M., & Schneider, B. A. (2006). Why do older adults have difficulty following conversations? Psychology and Aging, 21, 4961. doi:10.1037/0882-7974.21.1.49 Google Scholar
Noack, H., Lovden, M., Schmiedek, F., & Lindenberger, U. (2009). Cognitive plasticity in adulthood and old age: Gauging the generality of cognitive intervention effects. Restorative Neurology and Neuroscience, 27, 435453.Google Scholar
Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jancke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: A diffusion tensor imaging study. Frontiers in Human Neuroscience, 4. doi:10.3389/neuro.09.076.2009 Google Scholar
Ohnishi, T., Matsuda, H., Tabira, T., Asada, T., & Uno, M. (2001). Changes in brain morphology in Alzheimer disease and normal aging: Is Alzheimer disease an exaggerated aging process? American Journal of Neuroradiology, 22, 16801685.Google Scholar
Paap, K. R., & Greenberg, Z. I. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66, 232258. doi:10.1016/j.cogpsych.2012.12.002 Google Scholar
Pakulak, E., & Neville, H. J. (2010). Proficiency differences in syntactic processing of monolingual native speakers indexed by event-related potentials. Journal of Cognitive Neuroscience, 22, 27282744.Google Scholar
Park, D. C., & Bischof, G. N. (2011). Neuroplasticity, aging, and cognitive function. In Schaie, K. W. & Willis, S. L. (Eds.), Handbook of the psychology of aging. San Diego, CA: Academic Press.Google Scholar
Park, D. C., Polk, T. A., Hebrank, A. C., & Jenkins, L. J. (2010). Age differences in default mode activity on easy and difficult spatial judgment tasks. Frontiers in Human Neuroscience, 3, 75.Google Scholar
Park, I. S., Lee, K. J., Han, J. W., Lee, N. J., Lee, W. T., Park, K. A., et al. (2009). Experience-dependent plasticity of cerebellar vermis in basketball players. Cerebellum, 8, 334339. doi:10.1007/s12311-009-0100-1 Google Scholar
Park, J., Carp, J., Hebrank, A., Park, D. C., & Polk, TA. (2010). Neural specificity predicts fluid processing ability in older adults. Journal of Neuroscience, 30, 92539259.Google Scholar
Peal, E., & Lambert, W. E. (1962). The relation of bilingualism to intelligence. Psychological Monographs, 76, 123.Google Scholar
Peelle, J. E., Troiani, V., Wingfield, A., & Grossman, M. (2010). Neural processing during older adults’ comprehension of spoken sentences: Age differences in resource allocation and connectivity. Cerebral Cortex, 20, 773782. doi:10.1093/Cercor/Bhp142 Google Scholar
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15, 202206. doi:10.1016/j.conb.2005.03.007 CrossRefGoogle ScholarPubMed
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., et al. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.Google Scholar
Petrides, M. (1998). Specialised systems for the processing of mnemonic information within the primate frontal cortex. Oxford: Oxford University Press.Google Scholar
Pichora-Fuller, M. K. (2003a). Cognitive aging and auditory information processing. International Journal of Audiology, 42, S26S32.Google Scholar
Pichora-Fuller, M. K. (2003b). Processing speed and timing in aging adults: Psychoacoustics, speech perception, and comprehension. International Journal of Audiology, 42, S59S67.Google Scholar
Pivneva, I., Mercier, J., & Titone, D. (2014). Executive control modulates cross-language lexical activation during L2 reading: Evidence from eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 787796.Google Scholar
Pivneva, I., Palmer, C., & Titone, D. (2012). Inhibitory control and L2 proficiency modulate bilingual language production: Evidence from spontaneous monologue and dialogue speech. Frontiers in Psychology, 3, 16.Google Scholar
Prior, A., & Gollan, T. H. (2011). Good language-switchers are good task-switchers: Evidence from Spanish-English and Mandarin–English bilinguals. Journal of the International Neuropsychological Society, 17, 682691. doi:10.1017/S1355617711000580 Google Scholar
Prior, A., & MacWhinney, B. (2010). A bilingual advantage in task switching. Bilingualism: Language and Cognition, 13, 253262. doi:10.1017/S1366728909990526 CrossRefGoogle ScholarPubMed
Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional finding. In Craik, F. I. M. & Salthouse, T. (Eds.), The handbook of aging and cognition (pp. 190). Mahwah, NJ: Erlbaum.Google Scholar
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 16761689. doi:10.1093/Cercor/Bhi04 Google Scholar
Rentz, D., Locascio, J., Becker, J., Moran, E., Eng, E., & Buckner, R., et al. (2010). Cognition, reserve, and amyloid deposition in normal aging. Annals of Neurology, 67, 353364.Google Scholar
Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. Journal of Neuroscience, 23, 32953301.Google Scholar
Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174187. doi:10.1162/089892900561814 Google Scholar
Revill, K. P., & Spieler, D. H. (2012). The effect of lexical frequency on spoken word recognition in young and older listeners. Psychology and Aging, 27, 8087. doi:10.1037/a0024113 Google Scholar
Riley, K., Snowdon, D., Desrosiers, M., & Markesbery, W. (2005). Early life linguistic ability, late life cognitive function, and neuropathology: Findings from the Nun Study. Neurobiology of Aging, 26, 341347.Google Scholar
Robert, C., & Mathey, S. (2007). Aging and lexical inhibition: The effect of orthographic neighborhood frequency in young and older adults. Journal of Gerontology, 62B, P340P342.Google Scholar
Roberts, P., Garcia, L., Desrochers, A., & Hernandez, D. (2002). English performance of proficient bilingual adults on the Boston Naming Test. Aphasiology, 16, 635645.Google Scholar
Rodriguez-Fornells, A., Balaguer, R. D., & Munte, T. F. (2006). Executive control in bilingual language processing. Language Learning, 56, 133190.Google Scholar
Rubio-Fernandez, P., & Glucksberg, S. (2012). Reasoning about other people's beliefs: Bilinguals have an advantage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 211217. doi:10.1037/A0025162 Google Scholar
Salthouse, T. A. (1986). Aging and human performance: Charness, N. Contemporary Psychology, 31, 981982.Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403428.Google Scholar
Salthouse, T. A., & Meinz, E. J. (1995). Aging, inhibition, working-memory, and speed. Journal of Gerontology, 50B, P297P306.Google Scholar
Salvatierra, J. L., & Rosselli, M. (2011). The effect of bilingualism and age on inhibitory control. International Journal of Bilingualism, 15, 2637. doi:10.1177/1367006910371021 Google Scholar
Sanders, A. E., Hall, C. B., Katz, M. J., & Lipton, R. B. (2012). Non-native language use and risk of incident dementia in the elderly. Journal of Alzheimer's Disease, 29, 99108.Google Scholar
Schneider, B. A., Daneman, M., & Pichora-Fuller, M. K. (2002). Listening in aging adults: From discourse comprehension to psychoacoustics. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 56, 139152.Google Scholar
Schneider, B. A., Li, L., & Daneman, M. (2007). How competing speech interferes with speech comprehension in everyday listening situations. Journal of the American Academy of Audiology, 18, 559572.Google ScholarPubMed
Schneider, B. A., Pichora-Fuller, M. K., Kowalchuk, D., & Lamb, M. (1994). Gap detection and the precedence effect in young and old adults. Journal of the Acoustical Society of America, 95, 980991. doi:10.1121/1.408403 Google Scholar
Schneider, B. A., Speranza, F., & Pichora-Fuller, M. K. (1998). Age-related changes in temporal resolution: Envelope and intensity effects. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 52, 184191. doi:10.1037/h0087291 Google Scholar
Schwartz, A. I., & Kroll, J. F. (2006). Bilingual lexical activation in sentence context. Journal of Memory and Language, 55, 197212. doi:10.1016/J.Jml.2006.03.004 Google Scholar
Segalowitz, N. (2010). The cognitive bases of second language fluency. New York: Routledge.Google Scholar
Segalowitz, N., & Hulstijn, J. (2005). Automaticity in bilingualism and second language learning. In Kroll, J. F. & de Groot, A. B. B. (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 371388). New York: Oxford University Press.Google Scholar
Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society, B: Psychological Sciences, 351, 14051412.Google Scholar
Simon, J. R. (1969). Reactions towards the source of stimulation. Journal of Experimental Psychology, 81, 174176.Google Scholar
Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17, 16131622. doi:10.1006/nimg.2002.1288 Google Scholar
Snowdon, D., Kemper, S. J., & Mortimer, J. A. (1996). Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: Findings from the Nun Study. Journal of the American Medical Association, 275, 528532.Google Scholar
Sommers, M. S. (1996). The structural organization of the mental lexicon and its contribution to age-related declines in spoken-word recognition. Psychology and Aging, 11, 333341. doi:10.1037/0882-7974.11.2.333 Google Scholar
Sommers, M. S., & Danielson, S. M. (1999). Inhibitory processes and spoken word recognition in young and older adults: The interaction of lexical competition and semantic context. Psychology and Aging, 14, 458472.Google Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309315. doi:10.1038/nn1008 Google Scholar
Stewart, R., & Wingfield, A. (2009). Hearing loss and cognitive effort in older adults’ report accuracy for verbal materials. Journal of the American Academy of Audiology, 20, 147154. doi:10.3766/Jaaa.20.2.7 Google Scholar
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20, 327348. doi:10.1007/s11065-010-9148-4 Google Scholar
Taler, V., Aaron, G. P., Steinmetz, L. G., & Pisoni, D. B. (2010). Lexical neighborhood density effects on spoken word recognition and production in healthy aging. Journal of Gerontology, 65B, 551560. doi:10.1093/geronb/gbq039 Google Scholar
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35, 147168. doi:10.1038/npp.2009.115 Google Scholar
Thierry, G., & Wu, Y. J. (2010). Chinese–English bilinguals reading English hear Chinese. Journal of Neuroscience, 30, 76467651. doi:10.1523/jneurosci.1602-10.2010 Google Scholar
Titone, D. A., Koh, C. K., Kjelgaard, M. M., Bruce, S., Speer, S. R., & Wingfield, A. (2006). Age-related impairments in the revision of syntactic misanalyses: Effects of prosody. Language and Speech, 49, 7599.Google Scholar
Titone, D., Libben, M., Mercier, J., Whitford, V., & Pivneva, I. (2011). Bilingual lexical access during L1 sentence reading: The effects of L2 knowledge, semantic constraint, and L1–L2 intermixing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 14121431. doi:10.1037/A0024492 Google Scholar
Tremblay, K. L., Piskosz, M., & Souza, P. (2003). Effects of age and age-related hearing loss on the neural representation of speech cues. Clinical Neurophysiology, 114, 13321343.Google Scholar
Tun, P. A., McCoy, S., & Wingfield, A. (2009). Aging, hearing acuity, and the attentional costs of effortful listening. Psychology and Aging, 24, 761766. doi:10.1037/A0014802 Google Scholar
Tyas, S., Snowdon, D., Desrosiers, M., Riley, K., & Markesbery, W. (2007). Healthy ageing in the Nun Study: Definition and neuropathologic correlates. Age and Ageing, 36, 650655.Google Scholar
Van Assche, E., Duyck, W., & Hartsuiker, R. J. (2012). Bilingual word recognition in a sentence context. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.00174 Google Scholar
Van Assche, E., Duyck, W., Hartsuiker, R. J., & Diependaele, K. (2009). Does bilingualism change native-language reading? Cognate effects in a sentence context. Psychological Science, 20, 923927.Google Scholar
van Hell, J. G., & de Groot, A. M. B. (2008). Sentence context modulates visual word recognition and translation in bilinguals. Acta Psychologica, 128, 431451. doi:10.1016/j.actpsy.2008.03.010 Google Scholar
van Hell, J. G., & Tanner, D. (2012). Second language proficiency and cross-language lexical activation. Language Learning, 62, 148171. doi:10.1111/J.1467-9922.2012.00710.X Google Scholar
Vitevitch, M. S., Luce, P. A., Pisoni, D. B., & Auer, E. T. (1999). Phonotactics, neighborhood activation, and lexical access for spoken words. Brain and Language, 68, 306311. doi:10.1006/brln.1999.2116 Google Scholar
Von Studnitz, R. E., & Green, D. W. (2002). The cost of switching language in a semantic categorization task. Bilingualism: Language and Cognition, 5, 241251.Google Scholar
Voss, M., Nagamatsu, L., Liu-Ambrose, T., & Kramer, A. (2011). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111, 15051513.Google Scholar
Wang, Y., Kuhl, P. K., Chen, C. H., & Dong, Q. (2009). Sustained and transient language control in the bilingual brain. NeuroImage, 47, 414422. doi:10.1016/ j.neuroimage.2008.12.055Google Scholar
Wang, Y., Xue, G., Chen, C., Xue, F., & Dong, Q. (2007). Neural bases of asymmetric language switching in second-language learners: An ER-fMRI study. NeuroImage, 35, 862870. doi:10.1016/j.neuroimage.2006.09.054 Google Scholar
Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159170.Google Scholar
West, R. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272292.Google Scholar
Whitford, V., & Titone, D. (2012). Second-language experience modulates first- and second-language word frequency effects: Evidence from eye movement measures of natural paragraph reading. Psychonomic Bulletin & Review, 19, 7380. doi:10.3758/s13423-011-0179-5 Google Scholar
Wingfield, A., Aberdeen, J. S., & Stine, E. A. L. (1991). Word onset gating and linguistic context in spoken word recognition by young and elderly adults. Journal of Gerontology, 46, P127P129.Google Scholar
Wingfield, A., McCoy, S. L., Peelle, J. E., Tun, P. A., & Cox, L. C. (2006). Effects of adult aging and hearing loss on comprehension of rapid speech varying in syntactic complexity. Journal of the American Academy of Audiology, 17, 487497.Google Scholar
Wingfield, A., & Tun, P. (2007). Cognitive supports and cognitive constraints on comprehension of spoken language. Journal of the American Academy of Audiology, 18, 567577.Google Scholar
Wingfield, A., Tun, P., McCoy, S., Stewart, R., & Cox, L. (2006). Sensory and cognitive constraints in comprehension of spoken language in adult aging. Seminars in Hearing, 27, 273283.Google Scholar
Woollett, K., Spiers, H. J., & Maguire, E. A. (2009). Talent in the taxi: A model system for exploring expertise. Philosophical Transactions of the Royal Society, 364B, 14071416. doi:10.1098/Rstb.2008.0288 Google Scholar
Wright, H. H., & Newhoff, M. (2002). Age-related differences in inference revision processing. Brain and Language, 80, 226239.Google Scholar
Yang, S. J., Yang, H. J., & Lust, B. (2011). Early childhood bilingualism leads to advances in executive attention: Dissociating culture and language. Bilingualism: Language and Cognition, 14, 412422. doi:10.1017/S1366728910000611 Google Scholar
Zhuang, J., Randall, B., Stamatakis, E. A., Marslen-Wilson, W. D., & Tyler, L. K. (2011). The interaction of lexical semantics and cohort competition in spoken word recognition: An fMRI study. Journal of Cognitive Neuroscience, 23, 37783790. doi:10.1162/jocn_a_0004Google Scholar