Published online by Cambridge University Press: 15 November 1996
Selection, hybridization, and genome manipulation in the Siluroidei is reviewed. Selection topics include strain evaluation, qualitative traits, quantitative traits, mass selection, family selection, inbreeding, and crossbreeding. Hybridization is discussed with reference to culture traits. Genome manipulation technologies-sex reversal, gynogenesis, androgenesis, polyploidization, and gene transfer-are considered with application to genetic improvement of Siluroidei. Strains of ictalurid catfish Vary significantly for traits such as growth, disease resistance, harvestability, reproduction, body conformation and carcass yield. Growth of domestic strains can be 250% greater than that of wild strains. Strain differences have also beenidentified for clariid, bagrid, and silurid catfishes. Mass selection has increascd growth rate by up to 30%. Heritability estimates predict a response to selection for the traits of disease resistance and tolerance to low oxygen levels. Crossbreeding strains of Ictalurus punctatus have improved growth, disease resistance and reproductive performance. Two generations of inbreeding depressed body weight of I. punctatus as much as 30%, and can reduce viability and reproductive performance. Hybridization of I. punctatus X I. furcatus has resulted in a 20% increase in growth. Traits for tolerance to oxygen deficit, feed conversion, disease resistance, harvestability, and carcass yield were also improved. Interspecific, intergeneric, and interfamilial hybrids have been made with clariid fishes; heterotic growth was indicated. Hybridization has also been used to combine desirable traits of parental species. Sex reversal of I. punctatus using estrogen treatment followed by progeny testing can result in monosex, all-male populations. Gynogenesis and androgenesis are approaches to production of inbred lines of catfish, but thus far have limited application in aquaculture. Polyploidization has been applied in several ictalurid, silurid, and clariid fishes, but predicted improvements in performance have not been realized. Gene transfer has been accomplished in I. punctatus and Clarias gariepinus using microinjection and electroporation; the foreign genes have been expressed and inherited. Transgenic I. punctatus containing salmonid growth hormone genes grew 20–40% faster than controls.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.