Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T00:19:49.955Z Has data issue: false hasContentIssue false

Connectionist computing and neural machinery: Examining the test of “timing”

Published online by Cambridge University Press:  04 February 2010

John K. Tsotsos
Affiliation:
Department of Computer Science and Canadian Institute for Advanced Research, University of Toronto, Toronto, Ontario, CanadaM5S 1A4

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, M. (1982) Local cortical circuits: An electrophysiological study. Springer-Verlag. [taDHB]CrossRefGoogle Scholar
Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. (1985) A learning algorithm for Boltzmann machines. Cognitive Science 9:147–69. [rDHB, MSL]Google Scholar
Allman, J. M., Baker, J. F., Newsome, W. T. & Petersen, S. E. (1981) Visual topography and function: Cortical-visual areas in the owl monkey. In: Multiple visual areas, vol. 2, Cortical sensory organization, ed. Woolsey, C. N.. Humana Press. [taDHB]Google Scholar
Allman, J., Miezin, F. & McGuinnis, E. (1985) Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8:407–30. [CDG]CrossRefGoogle ScholarPubMed
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985a) Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Submitted. [RAA]Google Scholar
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985b) The encoding of spatial location by posterior parietal neurons. Science. In press. [RAA, rDHB]CrossRefGoogle Scholar
Andersen, R. A., Siegel, R. M., Essick, G. K. & Asanuma, C. (1985) Subdivision of the inferior parietal lobule and dorsal prelunate gyrus of macaque by connectional and functional criteria. Investigative Ophthalmology (Suppl.) 26:266. [RAA]Google Scholar
Anderson, J. A. (1983) Cognitive and psychological computation with neural models. IEEE Transactions on Systems, Man, and Cybernetics 13:799815. [TJS]Google Scholar
Ballard, D. H. (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13:111–22. [taDHB]CrossRefGoogle Scholar
Ballard, D. H. (1984a) Parameter networks: Towards a theory of low-level vision. Artificial Inteuigence 22:235–67. [tarDHB]CrossRefGoogle Scholar
Ballard, D. H. (1984b) Task frames in robot manipulation. Proceedings of the National Conference on Artificial Intelligence,Austin, Tex. [rDHB]Google Scholar
Ballard, D. H. & Hayes, P. J. (1984) Parallel logical inference. Presented at the 7th Annual Conference of the Cognitive Science Society,Boulder, Colo. [tarDHB, JAB]Google Scholar
Ballard, D. H., Hinton, G. E. & Sejnowski, T. J. (1983) Parallel visual computation. Nature 306:2126. [tarDHB]CrossRefGoogle ScholarPubMed
Ballard, D. H. & Kimball, O. A. (1983) Rigid body motion from depth and optical flow. Computer Graphics, and Image Processing 22:95115. [taDHB]Google Scholar
Ballard, D. H. & Sabbah, D. (1983) Viewer independent shape recognitions. IEEE Transactions on Pattern Analysis and Machine Intelligence 5:653–60. [taDHB]CrossRefGoogle Scholar
Ballard, D. H. & Tanaka, H. (1985) Transformational form perception in 3D: Constraints, algorithms, implementation. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, ed. Joshi, A.. Morgan Kaufman. [tarDHB]Google Scholar
Bandyopadhyay, A. (1985) Constraints on the computation of rigid motion parameters from retinal displacements. Tech. Rept. 168, Computer Science Dept, University of Rochester. [taDHB]Google Scholar
Barbus, H. & Mesulam, M.-M. (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. Journal of Comparative Neurology 206:407–31. [RAA]CrossRefGoogle Scholar
Barlow, H. B. (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1:371–94. [taDHB, AJP]CrossRefGoogle ScholarPubMed
Barlow, H. B. (1981) Critical limiting factors in the design of the eye and visual cortex. Proceedings of the Royal Society of London, Series B 212:134. [taDHB]Google ScholarPubMed
Barlow, H. B. & Levick, R. W. (1965) The mechanism of directional selectivity in the rabbit's retina. Journal of Physiology 173:477504. [CK]CrossRefGoogle Scholar
Barnden, J. A. (1984) On short-term information processing in connectionist theories. Cognition and Brain Theory 7:2559. [JAB]Google Scholar
Barnden, J. A. (1985) Diagrammatic short-term information processing by neural mechanisms. Cognition and Brain Theory 7:285328. [rDHB, JAB]Google Scholar
Barto, A. G., Sutton, R. S. & Anderson, C. W. (1982) Adaptive neuron-like elements that can solve difficult learning control problems. Dept. of Computer & Information Science Tech. Rept. 32–21, University of Massachusetts. [taDHB]Google Scholar
Beck, J. M. (1979) Simplicial sets and the foundations of analysis. In: Applications of sheaves, ed. Fourman, M. P. et al. Springer-Verlag. [WCH]Google Scholar
Becker, W. & Jurgens, R. (1979) An analysis of the saecadic system by means of double step stimuli. Vision Research 19:967–83. [RAA]CrossRefGoogle ScholarPubMed
Bergen, J. R. & Julesz, B. (1983) Parallel versus serial processing in rapid pattern discrimination. Nature 303:696–98. [MSL]CrossRefGoogle ScholarPubMed
Blasdel, C. G., Fitzpatrick, D. & Lund, J. S. (1983) Organization and intracortical connectivity of layer IV in macaque striate cortex. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Brady, M. (1982) Computational approaches to image understanding. Computing Surveys 14:371. [taDHB]CrossRefGoogle Scholar
Brady, M. et al. (1982) Robot motion. MIT Press. [rDHB]Google Scholar
Brodmann, K. (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Cruna des Zellenbaues. J. A. Barth. [taDHB]Google Scholar
Bruce, C., Desimone, R. & Cross, C. G. (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46:369–84. [taDHB]CrossRefGoogle Scholar
Bruce, C. J. & Goldberg, M. E. (1985) Primate frontal eye fields. 1. Single neurons discharging before saccades. Journal of Neurophysiology 53:603–35. [RAA]CrossRefGoogle Scholar
Burton, H. & Robinson, C. J. (1981) Organization of the SII parietal cortex: Multiple somatic sensory representations within and near the second somatic sensory area of cynomolgus monkeys. In: Multiple somatic areas, vol. 1, Cortical Sensory Organization, ed. Woolsey, C. N.. Humana Press. [taDHB]Google Scholar
Canon, S. C., Robinson, D. A. & Shamma, S. (1983) A proposed neural network for the integrator of the oculomotor system. Biological Cybernetics 49:127–36. [TJS]CrossRefGoogle Scholar
Churchland, P. M. (1985a) Cognitive neurobiology: A computational hypothesis for laminar cortex. Biology and Philosophy 1. In press. [PMC, JF]CrossRefGoogle Scholar
Churchland, P. M. (1985b) Phase-space representation and coordinate transformation: A computational hypothesis for laminar and cerebellar cortex. Submitted. [rDHB]Google Scholar
Cohen, M. A. & Grossberg, S. (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics 13:815–25. [TJS]Google Scholar
Cohen, M. A. & Grossberg, S. (1984a) Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance. Perception and Psychophysics 36:428–56. [SG]CrossRefGoogle ScholarPubMed
Cohen, M. A. & Grossberg, S. (1984b) Some global properties of binocular resonances: Disparity matching, filling-in, and figure-ground synthesis. In: Figural synthesis, ed. Dodwell, P. & Caelli, T.. Erlbaum. [SG]Google Scholar
Colonnier, M. (1964) The tangential organization of the visual cortex. Journal of Anatomy (London) 98:327–44. [WCH]Google ScholarPubMed
Constantine-Paton, M. & Law, M. I. (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–41. [SG]CrossRefGoogle ScholarPubMed
Cottrell, G. W. (1985) A connectionist approach to word sense disambiguation. Ph.D. dissertation, University of Rochester. [rDHB]Google Scholar
Cowey, A. (1981) Why are there so many visual areas? In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Crick, F. (1984) The function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81:4586–90. [tarDHB, CK]CrossRefGoogle ScholarPubMed
Crick, F. H. C. & Asanuma, C. (1986) Certain aspects of the anatomy and physiology of the cerebral cortex, in: Parallel distributed processing: Explorations in the microstructure of cognition, ed. McClelland, J. & Rumelhart, D.. MIT Press. In press. [TJS]Google Scholar
Curcio, C. A. & Harting, J. K. (1978) Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes. Brain Research 143:155–61. [taDHB]CrossRefGoogle ScholarPubMed
Cynader, M. S., Matsubara, J. & Swindale, N. V. (1983) Surface organization of functional and topographic maps in cat visual cortex. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Daw, N. W. (1973) Neurophysiology of color vision. Physiological Review 53:571611. [WCH]CrossRefGoogle ScholarPubMed
Desimone, R., Schein, S. J., Moran, J. & Ungerleider, L. G. (1985) Contour, color, and shape analysis beyond the striate cortex. Vision Research 25:441–52. [SG]CrossRefGoogle ScholarPubMed
De Valois, K. K. (1977) Spatial frequency adaptation can enhance contrast sensitivity. Vision Research 17:1057–65. [taDHB]CrossRefGoogle ScholarPubMed
De Valois, R. L., Yund, E. W. & Hepler, N. (1982) The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22:531–44. [SG]CrossRefGoogle ScholarPubMed
DeYoe, E. A. & Van Essen, D. C. (1985) Neurons projecting to MT and V4 from macaque V2 are segregated into discrete stripe-like patches. Neuroscience Abstracts 10:934. [CDG]Google Scholar
Didday, R. L. (1976) A model of visuomotor mechanisms in the frog optic tectum. Mathematical Biosciences 30:169–80. [taDHB, MSL]CrossRefGoogle Scholar
Dimond, S. J., Scammell, R. E., Brouwers, E. Y. M. & Weeks, R. (1977) Functions of the centre section (trunk) of the corpus callosum in man. Brain 100:543–62. [taDHB]CrossRefGoogle ScholarPubMed
Dodson, C. T. J. (1980) Categories, bundles, and spacetime topology. Shiva Publishing. [WCH]Google Scholar
Dow, B. M. & Bauer, R. (1983) Retinotopy and orientation columns in the monkey: A new model. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Dykes, R. W., Sur, M., Merzenich, M. M., Kaas, J. H. & Nelson, R. J. (1981) Regional segregation of neurons responding to quickly adapting, slowly adapting, deep and pacinian receptors within thalamic ventroposterior lateral and ventroposterior inferior nuclei in the squirrel monkey (Saimiri sciureus). Neuroscience 6:1687–92. [MS]CrossRefGoogle ScholarPubMed
Eccles, J. C. (1957) The physiology of nerve cells. Johns Hopkins University Press. [taDHB]Google Scholar
Edelman, G. M. (1981) Group selection as the basis for higher brain function. In: Organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [LHF]Google Scholar
Edelman, G. M. (1984) Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annual Review of Neuroscience 7:339–77. [LHF]CrossRefGoogle ScholarPubMed
Edelman, G. M. & Finkel, L. H. (1984) Neuronal group selection in the cerebral cortex. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley. [LHF]Google Scholar
Edelman, G. M. & Mountcastle, V. B. (1978) The mindful brain: Cortical organization and the group-selective theory of higher brain function. MIT Press. [rDHB]Google Scholar
Edelman, C. M. & Reeke, G. N. (1982) Selective networks capable of representative transformations, limited generalizations, and associative memory. Proceedings of the National Academy of Sciences of the United States of America 79:2091–95. [rDHB, LHF]CrossRefGoogle ScholarPubMed
Feldman, J. A. (1981a) Memory and change in connection networks. Tech. Rept. 96, Computer Science Dept., University of Rochester. [tarDHB]Google Scholar
Feldman, J. A. (1981b) A connectionist model of visual memory. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [DM]Google Scholar
Feldman, J. A. (1982) Dynamic connections in neural networks. Biological Cybernetics 46:2739. [rDHB]CrossRefGoogle ScholarPubMed
Feldman, J. A. (1985) Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences 8:265313. [taDB, SG]CrossRefGoogle Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6:205–54. [tarDHB]CrossRefGoogle Scholar
Ferster, D. (1981) A comparison of the binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. Journal of Physiology 311:623–55. [CDG]CrossRefGoogle ScholarPubMed
Finkel, L. H. & Edelman, G. M. (1985) Interaction of synaptic modification rules within populations of neurons. Proceedings of the National Academy of Sciences of the United States of America 82:1291–95. [LHF]CrossRefGoogle ScholarPubMed
Fleet, D. J., Hallett, P. E. & Jepson, A. D. (1985) Spatiotemporal inseparability in early visual processing. Biological Cybernetics. In press. [JKT]CrossRefGoogle Scholar
Fleet, D. J. & Jepson, A. D. (1984). A cascaded filter approach to the construction of velocity selective mechanisms. RBCV-TR-84–6, Dept Computer Science, University of Toronto. [IKT]Google Scholar
Freuder, E. C. (1978) Synthesizing constraint extension. Communications of the ACM 21:958–65. [taDHB]CrossRefGoogle Scholar
Freyd, P. (1976) Properties invariant within equivalence types of categories. In: Algebra, topology, and category theory, ed. Heller, A. & Tierney, M.. Academic Press. [WCH]Google Scholar
Fuchs, A. F., Kaneko, C. R. S. & Scudder, C. A. (1985) Brainstem control of saccadic eye movements. Annual Review of Neuroscience 8:307–37. [RAA]CrossRefGoogle ScholarPubMed
Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–84. [taDHB]CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Kalaska, J. F., Crutcher, M. D., Caminiti, R. & Massey, J. T. (1984) The representation of movement direction in the motor cortex. Single cell and population studies. In: Dynamic aspects of neorcortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley. [LHF]Google Scholar
Cerstein, G. L., Bloom, M. J., Espinosa, I. E., Evanczuk, S. & Turner, M. R. (1983) Design of a laboratory for multineuron studies. IEEE Transactions on Systems, Man, and Cybernetics 13:668–76. [DM]Google Scholar
Gibson, J. J. (1950) The perception of the visual world. Houghton Mifflin. [taDHB]Google Scholar
Gilbert, C. D. (1983) Microcircuitry of the visual cortex. Annual Review of Neuroscience 6:217–47. [taDHB]CrossRefGoogle ScholarPubMed
Gilbert, C. D. & Wiesel, T. N. (1979) Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex. Nature 280:120–25. [LHF]CrossRefGoogle ScholarPubMed
Gilbert, C. D. & Wiesel, T. N. (1981) Laminar specialization and intracortical connections in cat primary visual cortex. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [WCH]Google Scholar
Gilbert, C. D. & Wiesel, T. N. (1983) Clustered intrinsic connections in cat visual cortex. Journal of Neurosciences 3:1116–33. [taDHB]CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. & Schwartz, M. L. (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216:755–57. [taDHB]CrossRefGoogle ScholarPubMed
Golgi, C. (1879) Di una nuova reazione apparentemente nera della cellule nervose cerebrali ottenuta col bichloruro di mercurio. Arch. Sci. Med. 3:17. [taDHB]Google Scholar
Gross, C. G., Bruce, C. J., Desimone, R., Fleming, J. & Gattass, R. (1981) Cortical visual areas of the temporal lobe: Three areas in the macaque. In: Multiple visual areas, vol. 2, Cortical sensory organization, ed. Woolsey, C. N.. Humana Press. [taDHB]Google Scholar
Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35:96111. [DM]CrossRefGoogle ScholarPubMed
Grossberg, S. (1984) Outline of a theory of brightness, color, and form perception. In: Trends in mathematical psychology, ed. Degreef, E. & van Buggenhaut, J.. North-Holland. [SG]Google Scholar
Grossberg, S. (1985) Four frames do not suffice. Behavioral and Brain Sciences 8:294–95. [SG]CrossRefGoogle Scholar
Grossberg, S. & Kuperstein, M. (1985) Adaptive neural dynamics of sensory-motor control: Ballistic eye movements. North-Holland. [SG]Google Scholar
Grossberg, S. & Mingolla, E. (1985a) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review 92:173211. [rDHB, SG]CrossRefGoogle ScholarPubMed
Grossberg, S. & Mingolla, E. (1985b) Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations. Submitted. [SG]CrossRefGoogle Scholar
Hallet, P. E. & Lightstone, A. D. (1976) Saccadic eye movements toward stimuli triggered by prior saccades. Vision Research 16:99106. [RAA]CrossRefGoogle Scholar
Harth, E. (1976) Visual perception: A dynamic theory. Biological Cybernetics 22:169–80. [EH]CrossRefGoogle ScholarPubMed
Harth, E. & Tzanakou, E. (1974) Alopex: A stochastic method for determining visual receptive fields. Vision Research 14:1475–82. [EH]CrossRefGoogle ScholarPubMed
Harth, E. & Unnikrishnan, K. P. (1985) Brainstem control of sensory information: A mechanism for perception. International Journal of Psychophysiology. In press. [EH]CrossRefGoogle Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. [taDHB, MSL]Google Scholar
Hildreth, C. (1984) Computational of the velocity field. Proceedings of the Royal Society of London, Series B 221:189220. [CK]Google ScholarPubMed
Hinton, G. E. (1981) Shape representation in parallel systems. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. IJCAI. [tarDHB]Google Scholar
Hinton, G. E. & Sejnowski, T. J. (1983) Optimal perceptual inference. In: Proceedings IEEE Computer Vision and Pattern Recognition Conference,IEEE. [taDHB, EH, TJS]Google Scholar
Hinton, G. E., Sejnowski, T. J. & Ackley, D. H. (1984) Boltzmann machines: Constraint satisfaction networks that learn. Tech. Rept. 84119, Computer Science Dept., Carnegie-Mellon University. [taDHB]Google Scholar
Hirsch, M. W., Pugh, C. C., & Shub, M. (1977) Invariant manifolds. Springer-Verlag. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1970) Higher visual perception as prolongation of the basic Lie transformation group. Mathematical Biosciences 6:437–71. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1971) Memory grows. Kybernetik 8:151–57. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1977) An informal historical description (with bibliography) of the “L.T.G./N.P.” Cahiers de Psychologie 20:139–50. [WCH]Google Scholar
Hoffman, W. C. (1978) The Lie transformation group approach to visual neuropsychology. In: Formal theories of visual perception, ed. Leeuwenberg, E. & Buffart, H.. Halsted Press. [WCH]Google Scholar
Hoffman, W. C. (1980) Subjective geometry and geometric psychology. Mathematical Modelling 1:349–67. [WCH]CrossRefGoogle Scholar
Hoffman, W. C. (1984) Figural synthesis by vectorfields: Geometric neuropsychology. In: Figural synthesis, ed. Dodwell, P. C. & Caelli, T.. Erlbaum. [WCH]Google Scholar
Hoffman, W. C. (1985) Some reasons why algebraic topology is important in neuropsychology: Perceptual and cognitive systems as fibrations. International Journal of Man-Machine Studies. In press. [WCH]CrossRefGoogle Scholar
Hogan, N. (1984) An organizing principle for a class of voluntary movements. Journal of Neuroscience 4:2745–54. [rDHB]CrossRefGoogle ScholarPubMed
Hogg, T. & Huberman, B. A. (1984) Understanding biological computation: Reliable learning and recognition. Proceedings of the National Academy of Sciences of the United States of America 81:6871–75. [TJS]CrossRefGoogle ScholarPubMed
Hollerbach, J. M. (1981) An oscillation theory of handwriting. Biological Cybernetics 39:139–56. [rDHB]CrossRefGoogle Scholar
Holmes, P. J. & Marsden, J. E. (1980) Dynamical systems and invariant manifolds. In: New approaches to nonlinear problems in dynamics, ed. Holmes, P. J.. SIAM. [WCH]Google Scholar
Hong, T. H. & Rosenfeld, A. (1984) Compact region extraction using pixel linking in a pyramid. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:222–29. [DM]CrossRefGoogle Scholar
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79:2554–58. [tarDHB, EH, TJS]CrossRefGoogle ScholarPubMed
Hopfield, J. J. & Tank, D. W. (1985) Neural computation in optimization problems. Biological Cybernetics. In press. [rDHB, CK, TJS]CrossRefGoogle Scholar
Horn, B. K. P. (1974) Determining lightness from an image. Computer Graphics and Image Processing 3:111299. [rDHB, CK]CrossRefGoogle Scholar
Horn, B. K. P. & Schunck, B. G. (1981) Determining optical flow. Artificial Intelligence 17:185204. [taDHB]CrossRefGoogle Scholar
Hough, P. U. C. (1962) Methods and means for recognizing complex patterns. U.S. patent 3,069,654. [MSL]Google Scholar
Hrechanyk, L. M. & Ballard, D. H. (1983) Viewframes: A connectionist model of form perception. In: Proceedings of the Defense Advanced Research Projects Agency Image Understanding Workshop, ed. Baumann, L. S.. Science Applications International. [taDHB]Google Scholar
Hubel, D. H. & Livingstone, M. S. (1985) Complex-unoriented cells in a subregion of primate area 18. Nature 315:325–27. [CDG]CrossRefGoogle Scholar
Hubel, D. H. & Wiesel, T. N. (1959) Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology 148:574–91. [CK]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160:106–54. [taDHB]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1963) Shape and arrangement of columns in cat's striate cortex. Journal of Physiology (London) 165:559–68. [taDHB]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. Journal of Comparative Neurology 158:267–93. [CDG]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1974) Uniformity of monkey striate cortex: A parallel relationship between field size, scatter and magnification factor. Journal of Comparative Neurology 158:295302. [MS]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1977) Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, Series B 198:159. [MS]Google ScholarPubMed
Hubel, D. H., Wiesel, T. N. & Stryker, M. P. (1978) Anatomical demonstration of orientation columns in macaque monkey. Journal of Comparative Neurology 177:3679. [taDHB]Google ScholarPubMed
Hummel, R. & Zucker, S. (1983) On the foundations of relaxation labeling processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 5:267–87. [taDHB, MSL]CrossRefGoogle ScholarPubMed
Jahnsen, H. & Llinas, R. (1984) Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology 349:205–26. [CK]CrossRefGoogle ScholarPubMed
Juliano, S. L., Favorov, O. & Whitsel, B. L. (1983) Reproducibility of 2DC patterns in monkey SI and their relationship to single unit mapping data. In: Proceedings of the 13th Annual Meeting. Society for Neuroscience. [taDHB]Google Scholar
Just, M. A. & Carpenter, P. A. (1985) Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review 92:137–72. [rDHB]CrossRefGoogle ScholarPubMed
Kaas, J. H., Nelson, R. J., Sur, M. & Merzenich, M. M. (1981) Organization of somatosensory cortex in primates. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Kawano, K., Mitsuyoshi, S. & Yamashita, M. (1984) Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. 1. Visual tracking neurons. Journal of Neurophysiology 51:340–51. [RAA]CrossRefGoogle Scholar
Kemperman, J. (1982) Recovering multidimensional punctate data from projections. Mathematics Dept., University of Rochester. [taDHB]Google Scholar
King, W. M., Lisberger, S. G. & Fuchs, A. F. (1976) Responses of fibers in medial longitudinal fasciculus (mlf) in alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. Journal of Neurophysiology 39:1135–49. [rDHB]CrossRefGoogle ScholarPubMed
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220:671–80. [taDHB, EH]CrossRefGoogle ScholarPubMed
Koch, C., Poggio, T. & Torre, V. (1982) Retinal ganglion cells: A functional interpretation of dendritic morphology. Philosophical Transactions of the Royal Society of London 298:227–64. [rDHB, CK]Google ScholarPubMed
Kosslyn, S. M. (1980) Image and mind. Harvard University Press. [rDHB, JCB]Google Scholar
Landry, P. & Deschenes, M. (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology 199:345371. [LHF]CrossRefGoogle Scholar
Landy, M. (1981) The formation of cell assemblies: A neural network simulation. Ph.D. dissertation, University of Michigan. [MSL]Google Scholar
Law, M. I. & Constantine-Paton, M. (1980) Right and left eye bands in frogs with unilateral tectal ablations. Proceedings of the National Academy of Sciences of the United States of America 77:2314–18. [SG]CrossRefGoogle ScholarPubMed
Lawton, D. T. (1983) Processing restricted sensor motion. In: Proceedings of the Defense Advanced Research Projects Agency Image Understanding Workshop, ed. Bauman, L. S.. Science Applications International. [taDHB]Google Scholar
Lee, D. N. & Reddish, P. E. (1981) Plummeting gannets: A paradigm of ecological optics. Nature 293:293–94. [taDHB]CrossRefGoogle Scholar
Livingstone, M. S. & Hubel, D. H. (1984) Anatomy and physiology of a color system in the primary visual cortex. Journal of Neurosciences 4:305–56. [taDHB]Google Scholar
Lund, J. S. (1981) Intrinsic organization of the primate visual cortex, area 17, as seen in Golgi preparations. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3:485534. [SG]CrossRefGoogle Scholar
Lynch, J. C. & Graybiel, A. M. (1983) Comparison of afferents traced to the superior colliculus from the frontal eye fields and from two sub-regions of area 7 of the rhesus monkey. Neuroscience Abstracts 9:750. [RAA]Google Scholar
Lynch, J. C., Mountcastle, V. B., Talbot, W. H. & Yin, T. C. T. (1977) Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology 40:362–89. [RAA]CrossRefGoogle ScholarPubMed
Ma, S.-K. (1976) Modern theory of critical phenomena. Benjamin Co. [TJS]Google Scholar
McClelland, J. L. (1985) Putting knowledge in its place: A scheme for programming parallel processing structures on the fly. Cognitive Science 9:113–46. [rDHB, JAB]CrossRefGoogle Scholar
McClelland, J. L. & Rumelhart, D. E. (1981) An interactive activation model of context effects in perception. Psychological Review 88:375407. [taDHB]CrossRefGoogle Scholar
McCulloch, W. S. & Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5:115–37. [taDHB]CrossRefGoogle Scholar
Maloney, L. (1984) A computational model of color constancy. Ph.D. dissertation, Stanford University. [taDHB]Google Scholar
Marr, D. (1978) Representing visual information. In: Computer vision systems, ed. Hanson, A. R. & Riseman, E. M.. Academic Press. [taDHB]Google Scholar
Marr, D. (1982) Vision. W. H. Freeman. [tarDHB, CK, TJS]Google Scholar
Marr, D. & Poggio, T. (1976) From understanding computation to understanding neural circuitry. Neuroscience Research Progress Bulletin 15:470–88. [taDHB, EH]Google Scholar
Maunsell, J. H. R. & Van Essen, D. C. (1982) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience Research 3:2563–86. [taDHB]CrossRefGoogle Scholar
Maunsell, J. H. R. & Van Essen, D. C. (1983a) Functional properties of neurons in middle temporal visual area (MT) of macaque monkey. 1. Selectivity for stimulus direction, velocity, and orientation. Journal of Neurophysiology 49:1127–47. [rDHB]CrossRefGoogle Scholar
Maunsell, J. H. R. & Van Essen, D. C. (1983b) Functional properties of neurons in -middle temporal visual area (MT) of macaque monkey. 2. Binocular interactions and the sensitivity to binocular disparity. Journal of Neurophysiology 49:1148–67. [rDHB]CrossRefGoogle ScholarPubMed
Mays, L. E. & Sparks, D. L. (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. journal of Neurophysiology 43:207–32. [RAA]CrossRefGoogle ScholarPubMed
Merzenich, M. M. & Kaas, J. H. (1980) Principles of organization of sensory-perceptual systems in mammals. Progress in Psychobiology and Physiological Psychology 9:142. [MS]Google Scholar
Merzenich, M. M., Kaas, J. H., Wall, J., Sur, M. & Felleman, D. J. (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neurosciences 8:3355. [rDHB, MS]CrossRefGoogle ScholarPubMed
Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J. & Felleman, D. J. (1984) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10:639–65. [LHF]CrossRefGoogle Scholar
Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A. & Zook, J. M. (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology 224:591605. [rDHB, MS]CrossRefGoogle ScholarPubMed
Miller, J. P., Rail, W. & Rinzel, J. (1985) Synaptic amplification by active membrane in dendritic spines. Brain Research 325:325–30. [rDHB]CrossRefGoogle ScholarPubMed
Milner, P. M. (1957) The cell assembly: Mark II. Psychological Review 64:242–52. [MSL]CrossRefGoogle ScholarPubMed
Minsky, M. & Papert, S. (1969) Perceptrons. MIT Press. [CK]Google Scholar
Mishkin, M., Ungerleider, L. G. & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6:414–17. [taDHB]CrossRefGoogle Scholar
Mitchison, G. & Crick, F. (1982) Long axons within the striate cortex: Their distribution, orientation, and patterns of connection. Proceedings of the National Academy of Sciences of the United States of America 79:3661–65. [taDHB]CrossRefGoogle ScholarPubMed
Montero, V. M. (1981) Topography of the cortico-cortical connections from the striate cortex in the cat. Brain, Behavior and Evolution 18:194218. [taDHB]Google ScholarPubMed
Motter, B. C. & Mountcastle, V. B. (1981) The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience 1:326. [SG]CrossRefGoogle ScholarPubMed
Mountcastle, V. B. (1978) An organizing principle for cerebral function: The unit module and the distributed system. In: The mindful brain, ed. Edelman, G. M. & Mountcastle, V. B.. MIT Press. [taDHB, MS]Google Scholar
Mountcastle, V. B., Anderson, R. A. & Motter, B. C. (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience 1:1218–35. [SG]CrossRefGoogle ScholarPubMed
Mountcastle, V. B., Lynch, J. C., Georgopoulos, A. & Sakata, H. (1975) Posterior parietal association cortex of the monkey: Command function for operations within extrapersonal space. Journal of Neurophysiology 38:871907. [RAA]CrossRefGoogle ScholarPubMed
Movshon, J. A. (1983) Analysis of visual motion. In: Proceedings of the Conference on Vision, Brain, and Cooperative Computation, ed. Arbib, M. & Hanson, A.. MIT Press. [taDHB]Google Scholar
Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. (1985) The analysis of moving visual patterns. In: Pattern recognition mechanisms, ed. Chagas, C., Gattas, R. & Gross, C. G.. Pontifica Academia Scientiarum. [CDG]Google Scholar
Nakayama, K. (1985) Motion psychophysics. Presentation at Cold Spring Harbor Neuroscience Course. [rDHB]Google Scholar
Ogren, M. P., McKay, R., Schiller, P. H., Maunsell, J. H. R. & Hockfield, S. (1985) Two antibodies specific for subpopulations of neurons in the monkey and cat visual pathways (abstract). Presented at Annual Spring Meeting, Association for Research in Vision and Ophthalmology, Sarasola, Fla. [rDHB]Google Scholar
Olberg, R. M. (1981a) Object and self-movement detectors in the ventral nerve cord of the dragonfly. Journal of Comparative Physiology 141:327–34. [taDHB]CrossRefGoogle Scholar
Olberg, R. M. (1981b) Parallel encoding of direction of wind, head, abdomen, and visual pattern movement by single interneurons in the dragonfly. Journal of Comparative Physiology 142:2741. [taDHB]CrossRefGoogle Scholar
O'Rourke, J. (1981) Dynamically quantized spaces for focusing the Hough transform. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. IJCAI. [taDHB]Google Scholar
Pasternak, T., Merigan, W. H. & Movshon, J. A. (1981) Motion mechanisms in strobe-reared cats: Psychophysical and electrophysical measures. Acta Psychologica 48:321–32. [taDHB]CrossRefGoogle ScholarPubMed
Pellionisz, A. (1984) Tensorial aspects of the multi-dimensional approach to the vestibule-oculomotor reflex. In Reviews in oculomotor research, ed. Berthoz, A. & Melvill-Jones, E.. Elsevier. [PMC]Google Scholar
Pellionisz, A. & Llinas, R. (1979) Brain modelling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience 4:323–48. [PMC]CrossRefGoogle ScholarPubMed
Pellionisz, A. & Llinas, R. (1982) Space-time representation in the brain: The cerebellum as a predictive space—time metric tensor. Neuroscience 7:2949–70. [PMC, JF]CrossRefGoogle ScholarPubMed
Pentland, A. P. (1984) Shading into texture. Proceedings of the National Conference on Artificial intelligence.William Kaufman. [taDHB]Google Scholar
Pentland, A. P. (1985) Perceptual organization and the representation of natural form. Tech. Note 357, SRI International. [rDHB]CrossRefGoogle Scholar
Perkel, D. H. & Perkel, D. J. (1985) Dendritic spines: Role of active membrane in modulating synaptic efficacy. Brain Research 325:331–35. [rDHB]CrossRefGoogle ScholarPubMed
Phillips, C. G., Zeki, S. & Barlow, H. B. (1984) Localization of function in the cerebral cortex. Brain 107:328–61. [MS]CrossRefGoogle ScholarPubMed
Piaget, J. (1980) Structuraiism. Basic Books. [WCH]Google Scholar
Pitts, W. & McCulloch, W. S. (1947) How we know universali: The perception of auditory and visual forms. Bulletin of Mathematical Biophysics 9:127–47. [WCH]CrossRefGoogle Scholar
Plaut, D. C. (1984) Visual recognition of simple objects by a connection network. Tech. Rept. 143, Computer Science Dept., University of Rochester. [rDHB]Google Scholar
Poggio, G. F. & Fisher, B. (1977) Binocular interactions and depth sensitivity of striate and prestriate cortical neurons of the behaving rhesus monkey. Journal of Physiology 40:13921405. [CDG]Google ScholarPubMed
Poggio, T. & Koch, C. (1985) Ill-posed problems in early vision: From computational theory to analog networks. Proceedings of the Royal Society of London, Series B. [rDHB, CK]Google Scholar
Poggio, T., Nishihara, H. K. & Nielsen, K. R. K. (1982) Zero-crossings and spatiotemporal interpolation in vision: Aliasing and electrical coupling between sensors. Memo 675, Artificial Intelligence Lab., MIT. [taDHB]Google Scholar
Prager, J. M. (1980) Extracting and labeling boundary segments in natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 2:1627. [taDHB]CrossRefGoogle ScholarPubMed
Prazdny, K. (1981) A simple method for recovering relative depth map in the case of a translating sensor. Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. ICJAI. [taDHB]Google Scholar
Rakic, P. (1974) Intrinsic and extrinsic factors influencing the shape of neurons and their assembly into neuronal circuits. In: Frontiers in neurology and ncuroscicnce research, ed. Seeman, P. & Brown, G. M.. University of Toronto Press. [taDHB]Google Scholar
Rakic, P. (1975) Local circuit neurons. Neuroscicnces Research Program Bulletin 13:299313. [JAB, LHF]Google ScholarPubMed
Rakic, P. (1981) Developmental events leading to laminar and areal organization of the neocortex. In: The organization of the cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G. & Dennis, S. G.. MIT Press. [taDHB]Google Scholar
Ramón y Cajal, S. (1911) Histologie du systeme nerveux de l'homme et des vertebres. Maloine. [taDHB]Google Scholar
Ratliff, F. & Hartline, H. K. (1956) Inhibitory interactions in the eye of Limulus (abstract). Federation Proceedings 15. [MSL]Google Scholar
Ratliff, F., ed. (1974) Studies on excitation and inhibition in the retina. Rockefeller University Press. [TJS]Google Scholar
Regan, D. & Beverley, K. I. (1985) Postadaptation orientation discrimination. Journal of the Optical Society of America A2:147–55. [MSL]CrossRefGoogle Scholar
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & Bach-y-Rita, P.. Pergamon. [RAA]Google Scholar
Robinson, D. A. (1978) The functional behavior of the peripheral oculomotor apparatus: A review. In: Disorders of ocular motility: Neurophysiological and clinical aspects, ed. Kommerell, G.. J. F. Bergman. [taDHB]Google Scholar
Robinson, D. L., Goldberg, M. E. & Stanton, G. B. (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. Journal of Neurophysiology 41:910–32. [RAA]CrossRefGoogle ScholarPubMed
Robinson, J. O. (1972) The psychology of visual illusion. Hutchinson. [WHC]Google Scholar
Rock, I. (1980) Difficulties with a direct theory of perception. Behavioral and Brain Sciences 3:398–99. [WCH]CrossRefGoogle Scholar
Rockland, K. S. & Lund, J. S. (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–34. [taDHB]CrossRefGoogle ScholarPubMed
Rosenblatt, F. (1958) The perception: A probabilistic model for information storage and organization in the brain. Psychological Review 65:386407. [taDHB]CrossRefGoogle ScholarPubMed
Rosenblatt, F. (1962) Principles of neurodynamics. Spartan Books. [MSL]Google Scholar
Rosenfeld, A., Hummel, R. A. & Zucker, S. W. (1976) Scene labelling by relaxation operations. IEEE Transactions on Systems, Man, and Cybernetics 6:420–33. [taDHB]Google Scholar
Rumelhart, D. E. & Zipser, D. (1985) Feature discovery by competitive learning. Cognitive Science 9:75112. [rDHB]Google Scholar
Sabbah, D. (1981) Design of a highly parallel visual recognition system. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, ed. Drina, A.. IJCAI. [taDHB]Google Scholar
Sabbah, D. (1982) A connectionist approach to visual recognition. Ph.D. dissertation, University of Rochester. [taDHB]Google Scholar
Sagi, D. & Julesz, B. (1985) “Where” and “what” in vision. Science 228:1217–19. [rDHB]CrossRefGoogle Scholar
Sakata, H., Shibutani, H. & Kawano, K. (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 43:1654–72. [taDHB]CrossRefGoogle ScholarPubMed
Sakata, H., Shibutani, H. & Kawano, K. (1983) Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 49:1364–80. [RAA, rDHB]CrossRefGoogle ScholarPubMed
Sakitt, B. & Barlow, H. (1982) A model for the economical encoding of the visual image in cerebral cortex. Biological Cybernetics 43:97108. [taDHB]CrossRefGoogle Scholar
Schiller, P. H., True, S. D. & Conway, J. H. (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology 44:1175–89. [RAA]CrossRefGoogle ScholarPubMed
Schmitt, F. O., Dev, P. & Smith, B. H. (1976) Electrotonic processing of information by brain cells. Science 193:114–20. [JAB]CrossRefGoogle ScholarPubMed
Schrödinger, E. (1967) What is life? Cambridge University Press. [rDHB]Google Scholar
Schwartz, E. L. (1980) Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Research 20:645–69. [MSL]CrossRefGoogle ScholarPubMed
Scott, P. D. (1979) Conditional control transfer mechanisms in the neocortex: 1. The basic model. Journal of Theoretical Biology 81:423–52. [MSL]CrossRefGoogle ScholarPubMed
Sejnowski, T. J. (1976) On global properties of neuronal interaction. Biological Cybernetics 22:8595. [TJS]CrossRefGoogle ScholarPubMed
Sejnowski, T. J. (1986) What is the style of computation in cerebral cortex? In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. J. McClelland & D. Rumelhart. In press. [TJS]Google Scholar
Shastri, L. (1985) Evidential reasoning in connectionist networks. Ph.D. dissertation, University of Rochester. [rDHB]Google Scholar
Shastri, L. & Feldman, J. A. (1985) Evidential reasoning in semantic networks: A formal theory. Presented at the 9th International Joint Conference on Artificial Intelligence,Los Angeles. [rDHB]Google Scholar
Shaw, G. L., Harth, E. & Scheibel, A. B. (1982) Cooperativity in brain function: Assemblies of approximately 30 neurons. Experimental Neurology 77:324–58. [taDHB]CrossRefGoogle ScholarPubMed
Shaw, G., Renaldi, P. & Pearson, J. (1983) Experimental Neurology 79:293–98. [taDHB]CrossRefGoogle Scholar
Shaw, G. L., Silverman, D. J. & Pearson, J. C. (1985) Model of cortical organization embodying a basis for a theory of information processing and memory recall. Proceedings of the National Academy of Sciences of the United States of America 82:2364–68. [rDHB]CrossRefGoogle ScholarPubMed
Shepard, R. N. (1984) Ecological constraints on internal representation: Resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review 91:417–47. [rDHB, JCB]CrossRefGoogle ScholarPubMed
Shepard, R. N. & Chipman, S. (1970) Second-order isomorphism of internal representations: Shapes of states. Cognifiue Psychology 1:117. [WCH]CrossRefGoogle Scholar
Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science 171:701–3. [MSL]CrossRefGoogle ScholarPubMed
Shepherd, G. M. (1974) The synoptic organization of the brain. Oxford University Press. [WCH]Google Scholar
Shepherd, G. M. (1983) Neurobiology. Oxford University Press. [taDHB, JAB]Google Scholar
Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J. & Rall, W. (1985) Signal enhancement in distal cortical dehdrites by means of interactions between active dendritic spines. Proceedings of the National Academy of Sciences of the United States of America 82:2192–95. [tarDHB, TJS]CrossRefGoogle ScholarPubMed
Shipp, S. & Zeki, S. (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315:322–25. [CDG]CrossRefGoogle ScholarPubMed
Siegel, R. M., Andersen, R. A., Essick, G. K. & Asanuma, C. (1985) The functional and anatomical subdivision of the inferior parietal labule. Society for Neuroscience Abstracts. In press. [RAA]Google Scholar
Singer, W. (1981) Topographic organization of orientation columns in the cat visual cortex: A deoxyglucose study. Experimental Brain Research 44:431–36. [taDHB]CrossRefGoogle ScholarPubMed
Spanier, E. H. (1966) Algebraic topology. McGraw-Hill. [WCH]Google Scholar
Sparks, D. (1983) The role of the primate superior colliculus in sensorimotor integration. In: Proceedings of the Conference on Vision, Brain, and Cooperative Computation, ed. Arbib, M. & Hanson, A.. MIT Press. [taDHB]Google Scholar
Stone, J., Dreher, B. & Leventhal, A. (1979) Hierarchical and parallel mechanisms in the organization of the visual cortex. Brain Research Reviews 1:345–94. [taDHB]CrossRefGoogle Scholar
Sullins, J. (1985) Value cell encoding schemes. Tech. Kept., Computer Science Dept., University of Rochester. Forthcoming. [rDHB]Google Scholar
Sur, M., Merzenich, M. M. & Kaas, J. H. (1980) Magnification, receptive field area and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. Journal of Neurophysiology 44:295311. [MS]CrossRefGoogle ScholarPubMed
Sur, M., Wall, J. T. & Kaas, J. H. (1981) Modular segregation of functional cell classes within postcentral somatosensory cortex primates. Science 212:1059–61. [MS]CrossRefGoogle Scholar
Szentagothai, J. (1978a) The local neuronal apparatus of the cerebral cortex. In: Cerebral correlates of conscious experience, ed. Buser, P. A. & Roguel-Buser, A.. North-Holland. [taDHB]Google Scholar
Szentagothai, J. (1978b) Specificity versus (quasi-) randomness in cortical connectivity. In: Achitectonics of the cerebral cortex, ed. Brazier, M. A. B. & Peutsch, H.. International Brain Research Organization Mon. Series, vol. 3. Raven Press. [taDHB]Google Scholar
Terzopoulos, D. (1984) Multilevel reconstruction of visual surfaces: Variational principles and finite element representations. In: Multiresolution image processing and analysis, ed. Rosenfeld, A.. Springer-Verlag. [rDHB, CK]Google Scholar
Thathachar, M. A. L. & Sastry, P. S. (1984) Some probabilistic algorithms for the consistent labeling problem. Report EE/63, Indian Institute of Science, Bangalore. [MSL]Google Scholar
Thirring, W. (1978) Classical dynamical systems. Springer-Verlag. [WCH]CrossRefGoogle Scholar
Tootell, R. B. H., Silverman, M. S., De Valois, R. L. & Jacobs, G. H. (1983) Functional organization of the second cortical visual area (V2) in the primate. Science 220:737–39. [taDHB]CrossRefGoogle Scholar
Treisman, A. M. & Gelade, G. (1980) A feature-integration theory of attention. Cognitive Psychology 12:97136. [tarDHB, SG, MSL]CrossRefGoogle ScholarPubMed
Tsotsos, J. K. (1985) Representational axes and temporal cooperative processes. In: Vision, brain and cooperative computation, ed. Arbib, M. & Hanson, A.. MIT Press. [rDHB, JKT]Google Scholar
Tusa, R. J. & Palmer, L. A. (1980) Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193:147–64. [taDHB]CrossRefGoogle ScholarPubMed
Tusa, R. J., Rosenquist, A. C. & Palmer, L. A. (1979) Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185:657–78. [taDHB]CrossRefGoogle Scholar
Tzanakou, E., Michalak, R. & Harth, E. (1979) The Alopex process: Visual receptive fields by response feedback. Biological Cybernetics 35:161–74. [rDHB, EH]CrossRefGoogle ScholarPubMed
Ullman, S. (1979) Relaxation and constrained optimization by local processes. Computer Graphics and Image Processing 10:115–25. [taDHB]CrossRefGoogle Scholar
Ullman, S. & Hildreth, E. (1983) The measurement of visual motion. In: Physical and biological processing of images, ed. Braddick, O. J. & Sleigh, A. C.. Springer-Verlag. [taDHB]Google Scholar
Uttal, W. (1981) A taxonomy of visual processes. Erlbaum. [JKT]Google Scholar
Van Essen, D. C. (1985) Functional organization of primate visual cortex. In The cerebrel cortex, vol. 3, Plenum Press. [rDHB]Google Scholar
Van Essen, D. C. (1979) Visual areas of the mammalian cerebral cortex. Annual Review of Neuroscience 2:227–63. [MS]CrossRefGoogle ScholarPubMed
Van Essen, D. C. & Maunsell, J. H. R. (1983) Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences 6:370–75. [taDHB]CrossRefGoogle Scholar
Van Essen, D. C., Maunsell, J. H. R. & Bixby, J. L. (1981) The middle temporal visual area in the macaque: Myloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199:293326. [RAA]CrossRefGoogle ScholarPubMed
Van Essen, D. C., Newsome, W. T. & Bixby, J. L. (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. Journal of Neuroscience 2:265–83. [taDHB]CrossRefGoogle ScholarPubMed
Van Essen, D. C., Newsome, W. T., Maunsell, J. H. R. & Bixby, J. L. (1985) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections. In preparation. [rDHB]CrossRefGoogle Scholar
von der Malsburg, C. (1981) Internal Rept. 81–2, Dept. of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Fed. Rep. Germany. [taDHB]Google Scholar
von der Malsburg, C. & Willshaw, D. J. (1977) How to label nerve cells so that they can interconnect in an ordered fashion. Proceedings of the National Academy of Sciences of the United States of America 74:5176–78. [taDHB]CrossRefGoogle Scholar
von Neumann, J. (1958) The computer and the brain. Yale University Press. [AJP]Google Scholar
Weller, R. E. & Kaas, J. H. (1981) Cortical and subcortical connections of the visual cortex in primates. In: Multiple visual areas, vol. 2, Cortical sensory organization, vol. 2, ed. Woolsey, C. N., Humana Press. [taDHB]Google Scholar
Willshaw, D. J. & von der Malsburg, C. (1979) A marker induction mechanism for the establishment of ordered neural mappings: Its application to the retinotectal problem. Philosophical Transactions of the Royal Society of London 287:203–43. [SG]Google Scholar
Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12:124. [TJS]CrossRefGoogle ScholarPubMed
Woolsey, C. N., ed. (1981) Multiple somatic areas, vol. 1, Cortical sensory organization. Humana Press. [taDHB]Google Scholar
Wurtz, R. H. & Newsome, W. T. (1985) Divergent signals encoded by neurons in extrastriate areas MT and MST during smooth pursuit eye movements. Society for Neuroscience Abstracts. In press. [RAA]Google Scholar
Yin, T. C. T. & Mountcastle, V. B. (1977) Visual input to the visuomotor mechanisms of the monkey's parietal lobe. Science 197:1381–83. [RAA, SG]CrossRefGoogle Scholar
Zeki, S. M. (1978) Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology 277:273–90. [taDHB]CrossRefGoogle ScholarPubMed
Zeki, S. M. (1983) Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength romposition. Neuroscience 9:767–81. [CDG]CrossRefGoogle Scholar