Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T00:08:54.440Z Has data issue: false hasContentIssue false

Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates

Published online by Cambridge University Press:  17 December 2014

David H. Reser
Affiliation:
Department of Physiology, Monash University, Melbourne, VIC3800, Australia. David.Reser@monash.eduhttp://www.med.monash.edu.au/physiology/staff/reser.html
Marcello Rosa
Affiliation:
Department of Physiology, Monash University, Melbourne, VIC3800, Australia. David.Reser@monash.eduhttp://www.med.monash.edu.au/physiology/staff/reser.html Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC 3800. Marcello.Rosa@monash.eduhttp://www.med.monash.edu.au/physiology/staff/rosa.html

Abstract

Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendor, D. & Wang, X. (2008) Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. Journal of Neurophysiology 100:888906.CrossRefGoogle ScholarPubMed
Bergman, T. J. (2013) Speech-like vocalized lip-smacking in geladas. Current Biology 23(7):R268–69.Google Scholar
Chan, A. M., Dykstra, A. R., Jayaram, V., Leonard, M. K., Travis, K. E., Gygi, B., Baker, J. M., Eskandar, E., Hochberg, L.R., Halgren, E. & Cash, S. S. (2014) Speech-specific tuning of neurons in human superior temporal gyrus. Cerebral Cortex 24(10):2679–93.Google Scholar
Fedurek, P. & Slocombe, K. E. (2011) Primate vocal communication: A useful tool for understanding human speech and language evolution? Human Biology 83:153–73.Google Scholar
Kikuchi, Y., Horwitz, B. & Mishkin, M. (2010) Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane. Journal of Neuroscience 30:13021–30.Google Scholar
Kuhl, P. K. & Miller, J. D. (1975) Speech perception by chinchilla: Voiced voiceless distinction in alveolar plosive consonants. Science 190:6972.Google Scholar
Kusmierek, P., Ortiz, M. & Rauschecker, J. P. (2012) Sound-identity processing in early areas of the auditory ventral stream in the macaque. Journal of Neurophysiology 107:1123–41.Google Scholar
Owren, M. J., Dieter, J. A., Seyfarth, R. M. & Cheney, D. L. (1993) Vocalizations of rhesus (Macaca mulatta) and Japanese (M. fuscata) macaques cross-fostered between species show evidence of only limited modification. Developmental Psychobiology 26:389406.Google Scholar
Perrodin, C., Kayser, C., Logothetis, N. K. & Petkov, C. I. (2011) Voice cells in the primate temporal lobe. Current Biology 21:1408–15.Google Scholar
Petkov, C. I., Kayser, C., Augath, M. & Logothetis, N. K. (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. PLOS Biology 4:e215.CrossRefGoogle ScholarPubMed
Pistorio, A. L., Vintch, B. & Wang, X. (2006) Acoustic analysis of vocal development in a New World primate, the common marmoset (Callithrix jacchus). Journal of the Acoustical Society of America 120:1655–70.Google Scholar
Rajan, R., Dubaj, V., Reser, D. H. & Rosa, M. G. (2013) Auditory cortex of the marmoset monkey – complex responses to tones and vocalizations under opiate anaesthesia in core and belt areas. European Journal of Neuroscience 37:924–41.Google Scholar
Reser, D. H., Burman, K. J., Richardson, K. E., Spitzer, M. W. & Rosa, M. G. (2009) Connections of the marmoset rostrotemporal auditory area: Express pathways for analysis of affective content in hearing. European Journal of Neuroscience 30:578–92.Google Scholar
Ross, M. D., Owren, M. J. & Zimmermann, E. (2010) The evolution of laughter in great apes and humans. Communicative and Integrative Biology 3:191–94.Google Scholar
Steinschneider, M., Nourski, K. V. & Fishman, Y. I. (2013) Representation of speech in human auditory cortex: Is it special? Hearing Research 305:5773.CrossRefGoogle ScholarPubMed
Steinschneider, M., Volkov, I. O., Fishman, Y. I., Oya, H., Arezzo, J. C. & Howard, M. A. 3rd. (2005) Intracortical responses in human and monkey primary auditory cortex support a temporal processing mechanism for encoding of the voice onset time phonetic parameter. Cerebral Cortex 15(2):170–86.Google Scholar
Toscano, J. C., McMurray, B., Dennhardt, J. & Luck, S. J. (2010) Continuous perception and graded categorization: Electrophysiological evidence for a linear relationship between the acoustic signal and perceptual encoding of speech. Psychological Science 21:1532–40.Google Scholar
Whitham, J., Gerald, M. & Maestripieri, D. (2007) Intended receivers and functional significance of grunt and gurney vocalizations in free-ranging rhesus macaques. Ethology 113:862–74.CrossRefGoogle Scholar
Winter, P., Handley, P., Ploog, D. & Schott, D. (1973) Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour 47:230–39.Google Scholar
Ziegler, W., Aichert, I. & Staiger, A. (2012) Apraxia of speech: Concepts and controversies. Journal of Speech, Language, and Hearing Research 55:S1485–501.CrossRefGoogle ScholarPubMed