Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T13:41:58.909Z Has data issue: false hasContentIssue false

Reconciling the role of central serotonin neurons in human and animal behavior

Published online by Cambridge University Press:  04 February 2010

Philippe Soubrié
Affiliation:
Department of Pharmacology, Faculty of Medicine, University of Paris VI, Pitié-Salpêtrière, 75634 Paris Cedex 13, France

Abstract

Animal research suggests that central serotonergic neurons are involved in behavioral suppression, particularly anxiety-related inhibition. The hypothesis linking decreased serotonin transmission to reduced anxiety as the mechanism in the anxiolytic activity of benzodiazepines conflicts with most clinical observations. Serotonin antagonists show no marked capacity to alleviate anxiety. On the other hand, clinical signs of reduced serotonergic transmission (low 5-HIAA levels in the cerebrospinal fluid) are frequently associated with aggressiveness, suicide attempts, and increased anxiety. The target article attempts to reconcile such human and animal findings by investigating whether anxiety reduction or increased impulsivity is more Likely to account for animal behavioral changes associated with decreased serotonergic transmission. The effects of manipulating central serotonin in experimental anxiety paradigms in animals (punishment, extinction, novelty) are reviewed and compared with the effects of antianxiety drugs. Anxiety seems neither necessary nor sufficient to induce control by serotonergic neurons on behavior. Further evidence suggests that behavioral effects of anxiolytics thought to be mediated by decreases in anxiety are not caused by the ability of these drugs to reduce serotonin transmission. Blockade of serotonin transmission, especially at the level of the substantia nigra, results in a shift of behavior toward facilitation of responding. This behavioral shift is particularly marked when there is competition between acting and restraining response tendencies and when obstacles prevent the immediate attainment of an anticipated reward. It is proposed that serotonergic neurons are involved not only in behavioral arousal but also in enabling the organism to arrange or tolerate delay before acting. Decreases in serotonin transmission seem to be associated with the increased performance of behaviors that are usually suppressed, though not necessarily because of the alleviation of anxiety, which might contribute to the suppression.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, T. W., Castellucci, V. F., Camardo, J. S., Kandel, E. R. & Lloyd, P. E. (1984) Two endogenous neuropeptides modulate the gill and siphen withdrawal reflex in Aplysia by presynaptic facilitation involving cAMP-dependent closure of a serotonin-sensitive potassium channel. Proceedings of the National Academy of Sciences of the U.S.A. 81:7956–60. [ENS]CrossRefGoogle Scholar
Adams, D. B. (1979) Brain mechanisms for offense, defense and submission. Behavioral and Brain Sciences 2:201–41. [FGG]CrossRefGoogle Scholar
Ågren, H. (1980) Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid. 1. General patterns. Psychiatry Research 3:211–23. [DS]CrossRefGoogle Scholar
Ågren, H. (1980) Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid. 2. Suicide. Psychiatry Research 3:225–36. [taPS]CrossRefGoogle ScholarPubMed
Andrade, R. & Aghajanian, G. K. (1984) Locus coeruleus activity in vitro: Intrinsic regulation by a calcium-dependent potassium conductance but not α2-adrenoceptors. Journal of Neuroscience 4:161–70. [JP]CrossRefGoogle ScholarPubMed
Anisman, H., Irwin, J., & Sklar, L. S. (1979) Deficits of escape performance following catecholamine depletion: Implications for behavioral deficits induced by uncontrollable stress. Psychopharmacology 64:163–70. [taPS]CrossRefGoogle ScholarPubMed
Anne, O. & Rasa, E. (1980) Ethological aspects of aggressive behaviour. Abstracts of papers presented at the NATO Advanced Study Institute, “The Biology of Aggression,” 07 21–30, 1980, Chateau de Bonas, France. [LV]Google Scholar
Ansseau, M., Doumont, A., Thiry, D. & Gelders, Y. (1983) Pilot study of a specific serotonergic antagonist, pirenperone, in the treatment of anxiety disorders. Acta Psychiatrica Belgica 83:517–24. [FGG]Google ScholarPubMed
Arnold, M. B., ed. (1970) Feelings and emotions. Academic Press. [LV]Google Scholar
Åsberg, M., Martensson, B. & Wagner, A. (1985) Biochemical indicators of serotonin function in affective illness (in press). [rPS]Google Scholar
Åsberg, M., Träskman, L. & Thorén, P. (1976) 5-HIAA in the cerebrospinal fluid: A biochemical suicide predictor? Archives of General Psychiatry 33:1193–97. [DS, MZ]CrossRefGoogle ScholarPubMed
Asin, K. E. & Fibiger, H. C. (1983) An analysis of neuronal elements within the median nucleus of the raphe that mediate lesion-induced increases in locomotor activity. Brain Research 268:211–23. [JP, DW]CrossRefGoogle ScholarPubMed
Asin, K. E. & Fibiger, H. C. (1984) Spontaneous and delayed spatial alternation following damage to specific neuronal elements within the nucleus medianus raphe. Behavioral Brain Research 13:241–50. [DW]CrossRefGoogle ScholarPubMed
Asin, K. E., Wirtshafter, D. & Fibiger, H. C. (1985) Electrolytic, but not 5,7-dihydroxytryptamine, lesions of the nucleus medianus raphe impair acquisition of a radial maze task. Behavioral and Neural Biology (in press). [DW]CrossRefGoogle Scholar
Asin, K. E., Wirtshafter, D. & Kent, E. W. (1979) Straight alley acquisition and extinction and open field activity following discrete electrolytic lesions of the mesencephalic raphe nuclei. Behavioral and Neural Biology 25:242–56. [DW]CrossRefGoogle ScholarPubMed
Asin, K. E., Wirtshafter, D. & Kent, E. W. (1980) The effects of electrolytic median raphe lesions on two measures of latent inhibition. Behavioral and Neural Biology 28:408–17. [DW]CrossRefGoogle ScholarPubMed
Asin, K. E., Wirtshafter, D. & Tabakoff, B. (1984) Behavioral effects of diazepam in rats with midbrain raphe lesions. Society for Neuroscience Abstracts 10:260. [DW]Google Scholar
Audi, E. A. & Graeff, F. G. (1984) Benzodiazepine receptors in the periaqueductal gray mediate anti-aversive drug action. European Journal of Pharmacology 103:279–85. [FGG]CrossRefGoogle ScholarPubMed
Azmitia, E. C. (1978) The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei. In: Handbook of psychopharmacology, vol. 9, Chemical pathways in the brain, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [JP]Google Scholar
Azmitia, E. C. & Segal, M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei n the rat. Journal of Comparative Neurology 179:641–67. [taPS]CrossRefGoogle Scholar
Baldessarini, R. J., Amatruda, T. T., Griffith, F. F. & Gerson, S. (1975) Differential effects of serotonin on turning and stereotypy induced by apomorphine. Brain Research 93:158–63. [taPS]CrossRefGoogle ScholarPubMed
Ballenger, J. C., Goodwin, F. K., Major, L. F. & Brown, G. L. (1979) Alcohol and central serotonin metabolism in man. Archives of General Psychiatry 36:224–29. [FGG, taPS]CrossRefGoogle ScholarPubMed
Banki, C. M. (1978) Clinical observations with pizofifene in the treatment of nomigramous depressed women. Archives of Psychiatry and Neurological Sciences 225:6772. [JFWD]Google ScholarPubMed
Banki, C. M. & Arato, M. (1983) Relationship between cerebrospinal fluid amine metabolites, neuroendocrine findings and personality dimensions (Marke-Nyman scale factors) in psychiatric patients. Acta Psychiatrica Scandinavica 67:272–80. [DS]CrossRefGoogle ScholarPubMed
Banki, C. M. & Molnar, G. (1981) Cerebrospinal fluid 5-hydroxyindoleacetic acid as an index of central serotonergic processes. Psychiatry Research 5:2332. [taPS]CrossRefGoogle ScholarPubMed
Banki, C. M., Molnar, G. & Vojnik, M. (1981) Cerebrospinal fluid amine metabolites, tryptophan and clinical parameters in depression. 2. Psychopathological symptoms. Journal of Affective Disorders 3:9199. [FGG, taPS]CrossRefGoogle ScholarPubMed
Barratt, E. S. (1959) Anxiety and impulsiveness related to psychomotor efficiency. Perceptual and Motor Skills 9:191–98. [ESB]CrossRefGoogle Scholar
Barratt, E. S. (1965) Factor analysis of some psychometric measures of impulsiveness and anxiety. Psychological Reports 16:547–54. [ESB]CrossRefGoogle ScholarPubMed
Barratt, E. S. (1983) The biological basis of impulsiveness: The significance of timing and rhythm disorders. Personality and Individual Differences 4:387–91. [ESB]CrossRefGoogle Scholar
Barratt, E. S. (in press) Impulsiveness defined within a systems model of personality. In: Advances in personality assessment, ed. Spielberger, C. & Butcher, J.. Erlbaum. [ESB]Google Scholar
Barratt, E. S. & Patton, J. H. (1983) Impulsivity: Cognitive, behavioral, and psychophysiological correlates. In: Biological bases of sensation-seeking, impulsivity, and anxiety, ed. Zuckerman, M.. Erlbaum. [ESB]Google Scholar
Barratt, E. S., Patton, J. H., Olsson, N. G. & Zucker, G. (1981) Impulsivity and paced tapping. Journal of Motor Behavior 13:286300. [ESB]CrossRefGoogle ScholarPubMed
Barratt, E. S. & Pritchard, W. S. (in press) Impulsiveness subtraits: Arousal and information processing. In: Proceedings of the XXIII International Congress of Psychology: Motivation, emotion, and personality, ed. Spence, J. & Izard, C.. Elsevier. [ESB]Google Scholar
Barratt, E. S. & White, R. (1969) Impulsiveness and anxiety related to medical students' performance and attitudes. Journal of Medical Education 44:604–7. [ESB]Google ScholarPubMed
Beleslin, D. B. & Samardzic, R. (1979) Effects of parachlorophenylalanine and 5,6-dihydroxytryptamine on aggressive behavior evoked by cholinomimetics and anticholinesterases injected into the cerebral ventricles of conscious cats. Neuropharmacology 18:251–57. [taPS]CrossRefGoogle ScholarPubMed
Beninger, R. J. (1984) Effects of metergoline and quipazine on locomotor activity of rats in novel and familiar environments. Pharmacology, Biochemistry and Behavior 20:701–5. [taPS]Google ScholarPubMed
Beninger, R. J. & Phillips, A. G. (1979) Possible involvement of serotonin in extinction. Pharmacology, Biochemistry and Behavior 10:3741. [taPS]Google ScholarPubMed
Birk, J. & Noble, R. G. (1981) Naloxone antagonism of diazepam-induced feeding in the Syrian hamster. Life Sciences 29:1125–31. [taPS]CrossRefGoogle ScholarPubMed
Bolles, R. C. & Fanselow, M. S. (1980) A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences 3:291300. [FGG]CrossRefGoogle Scholar
Boulenger, J.-P., Uhde, T. W., Wolff, E. A. & Post, R. M. (1984) Increased sensitivity to caffeine in patients with panic disorders. Archives of General Psychiatry 41:1067–71. [SP]CrossRefGoogle ScholarPubMed
Brandáo, M. L., De Aguiar, J. C. & Graeff, F. G. (1982) GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacology, Biochemistry and Behavior 16:397402. [FGG]Google ScholarPubMed
Breese, G. R. & Cooper, B. R. (1975) Behavioral and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Research 98:517–27. [taPS]CrossRefGoogle Scholar
Britton, K. T., Svensson, T., Schwarz, J., Bloom, F. E. & Koob, G. F. (1984) Dorsal noradrenergic bundle lesions fail to alter opiate withdrawal or suppression of opiate withdrawal by clonidine. Life Sciences 34:133–39. [JP]CrossRefGoogle ScholarPubMed
Broadhurst, P. L. (1960) Application of biometrical genetics to the inheritance of behaviour. In: Experiments in personality, vol. 1: Psychogenetics and psychopharmacology, ed. Eysenck, H. J.. Routledge & Kegan Paul. [LV]Google Scholar
Broca, P. (1861) Nouvelle observation d'aphémie produite par une lésion de la moitié postérieure des deuxième et troisième circonvolutions frontales. Bull. Soc. Anat. (Paris) 6:398. [ECA]Google Scholar
Broderick, P. & Lynch, V. (1982) Behavioral and biochemical changes induced by lithium and L-tryptophan in muricidal rats. Neuropharmacology 21:671–79. [taPS]CrossRefGoogle ScholarPubMed
Brodie, B. B. & Shore, P. (1957) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Annals of the New York Academy of Sciences 66:631–42. [MAG, tarPS]CrossRefGoogle ScholarPubMed
Brody, J. F. (1970) Behavioral effects of serotonin depletion and p-chlorophenylalanine (a serotonin depletor) in rats. Psychopharmacology 17:1433. [taPS, DW]CrossRefGoogle ScholarPubMed
Brown, G. L., Ebert, M. H., Goyer, P. F., Jimerson, D. C., Klein, W. J., Bunney, W. E. & Goodwin, F. C., (1982) Aggression, suicide and serotonin: Relationship to CSF amine metabolites. American Journal of Psychiatry 139:741–46. [taPS, DS, MZ]Google ScholarPubMed
Brown, G. L., Goodwin, F. K. & Bunney, W. E. (1982) Human aggression and suicide: Their relationship to neuropsychiatric diagnoses and serotonin metabolism. In: Advances in biochemical psychopharmacology, vol. 34: Serotonin in biological psychiatry, ed. Ho, B. T. et al. Raven Press. [taPS]Google Scholar
Brown, L., Rossellini, R. A., Samuels, O. B. & Riley, E. P. (1982) Evidence for a serotonergic mechanism of the learned helplessness phenomenon. Pharmacology, Biochemistry and Behavior 17:877–83. [taPS]Google ScholarPubMed
Bunney, B. S. & Aghajanian, G. K. (1976) The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Research 117:423–35. [rPS, DW]CrossRefGoogle ScholarPubMed
Campbell, A. B., Brown, R. M. & Seiden, L. S. (1971) A selective effect of p-chlorophenylalanine on fixed-ratio responding. Physiology and Behavior 7:853–57. [DW]CrossRefGoogle ScholarPubMed
Carlton, P. L. & Advokat, C. (1973) Attenuated habituation due to parachlorophenylalanine. Pharmacology, Biochemistry and Behavior 1:657–63. [taPS]Google ScholarPubMed
Carter, C. J. & Pycock, C. J. (1978) A study of the sites of interaction between dopamine and 5-hydroxytryptamine for the production of fluphenazine-induced catalepsy. Naunyn-Schmiedeberg's Archives of Pharmacology 304:135–39. [taPS]CrossRefGoogle ScholarPubMed
Carter, C. J. & Pycock, C. J. (1979) The effects of 5,7-dihydroxytryptamine lesions of extrapyramidal and mesolimbic sites on spontaneous motor behavior and amphetamine-induced stereotypy. Naunyn-Schmiedeberg's Archives of Pharmacology 308:5154. [taPS, DW]CrossRefGoogle ScholarPubMed
Carter, C. J. & Pycock, C. J. (1980) 5,7-dihydroxytryptamine lesions of the amygdala reduce amphetamine and apomorphine-induced stereotyped behavior in the rat. Naunyn-Schmiedeberg's Archives of Pharmacology 312:235–38. [taPS, DW]CrossRefGoogle ScholarPubMed
Cerrito, F. & Raiteri, M. (1979) Serotonin release is modulated by presynaptic autoreceptors. European Journal of Pharmacology 57:427–30. [CHV]CrossRefGoogle ScholarPubMed
Ceulemans, D. (1985) The antagonism of serotonin receptors in the treatment of anxiety disorders. Presented at the Fifth European Winter Conference on Brain Research, Vars-les-Claux, France. [rPS]Google Scholar
Ceulemans, D., Hoppenbrouwers, M.-L., Gelders, Y. & Reyntjens, A. (1984) Serotonin blockade or benzodiazepine: What kind of anxiolysis? Abstracts of the 14th CINP Congress, Florence. [SP]Google Scholar
Chadwick, D., Jenner, P. & Reynolds, E. (1976) Amines, anticonvulsants, and epilepsy. In: Proceedings of the Seventh International Symposium on Epilepsy, ed. Dieter, J.. Georg Thieme. [ESB]Google Scholar
Charney, D. S., Heninger, G. R. & Redmond, D. E. (1983) Yohimbine-induced anxiety and increased noradrenergic function in humans: Effects of diazepam and clonidine. Life Sciences 33:1929. [SP]CrossRefGoogle ScholarPubMed
Charney, D. S. & Redmond, D. E. Jr., (1983) Neurobiological mechanisms in human anxiety: Evidence supporting central noradrenergic hyperactivity. Neuropharmacology 22:1531–36. [LV]CrossRefGoogle ScholarPubMed
Childs, B. (1972) Genetic analysis of human behavior. Annual Reviews of Medicine 23:373406. [LV]CrossRefGoogle ScholarPubMed
Christmas, A. J. & Maxwell, D. R. (1970) A comparison of the effects of some benzodiazepines and other drugs on aggressive and exploratory behavior in mice and rats. Neuropharmacology 9:1729. [taPS]CrossRefGoogle ScholarPubMed
Clarke, A. & File, S. E. (1982) Selective neurotoxin lesions of the lateral septum: Changes in social and aggressive behaviors. Pharmacology, Biochemistry and Behavior 17:623–28. [taPS]Google Scholar
Cleckley, H. (1976) The mask of sanity. 5th ed.Mosby. [DS]Google Scholar
Commissaris, R. L., Lyness, W. H. & Rech, R. H. (1981) The effects of d-lysergic acid diethylamide (LSD), 2,5-dimethoxy-4-methylamphetamine (DOM), pentobarbital and methaqualone on punished responding in control and 5,7-DHT-treated rats. Pharmacology, Biochemistry and Behavior 14:617–23. [RLC]Google Scholar
Commissaris, R. L. & Rech, R. H. (1982) Interactions of metergoline with diazepam, quipazine, and hallucinogenic drugs on a conflict behavior in the rat. Psychopharmacology 76:282–85. [RLC, taPS]CrossRefGoogle ScholarPubMed
Cools, A. R. (1974) The transsynaptic relationship between dopamine and serotonin in the caudate nucleus of cats. Psychopharmacologia 36:229–37. [MAG]CrossRefGoogle ScholarPubMed
Copenhaver, J. H., Schalock, R. L. & Carver, M. J. (1978) Para-chloro-D, l-phenylalanine induced filicidal behavior in the female rat. Pharmacology, Biochemistry and Behavior 8:263–70. [taPS]Google ScholarPubMed
Corda, M. G., Ferrari, M., Guidotti, A., Konkel, D. & Costa, E. (1984) Isolation, purification and partial sequence of a neuropeptide (diazepam-binding inhibitor) percursor of an anxiogenic putative ligand for benzodiazepine recognition site. Neuroscicnce Letters 47:319–24. [LV]CrossRefGoogle Scholar
Costall, B., Fortune, D. H., Naylor, R. J., Marsden, C. D. & Pycock, C. J. (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 14:859–68. [taPS]CrossRefGoogle ScholarPubMed
Costall, B., Hui, S. C. G. & Naylor, R. J. (1979) The importance of serotonergic mechanisms for the induction of hyperactivity by amphetamine and its antagonism by intra-accumbens (3,4-dihydroxy-phenylamino)-2-imidazoline (DPI). Neuropharmacology 18:605–9. [taPS]CrossRefGoogle Scholar
Costall, B., Naylor, R. J., Cannon, J. G. & Lee, T. (1977) Differentiation of the dopamine mechanisms mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate-putamen. Journal of Pharmacy and Pharmacology 29:337–42. [taPS]CrossRefGoogle ScholarPubMed
Costall, B., Naylor, R. J., Marsden, C. D. & Pycock, C. J. (1976) Serotonergic modulation of the dopamine response from the nucleus accumbens. Journal of Pharmacy and Pharmacology 28:523–26. [taPS]CrossRefGoogle Scholar
Crowley, T. J., Stynes, A. J., Hydinger, M. & Kaufman, I. C. (1974) Ethanol, methamphetamine, pentobarbital, morphine, and monkey social behavior. Archives of General Psychiatry 31:829–38. [MJR]CrossRefGoogle ScholarPubMed
Dantzer, R. (1977) Behavioral effects of benzodiazepines: A review. Biobehavioral Reviews 1:7186. [SP, taPS]CrossRefGoogle Scholar
Dantzer, R., Mormede, P. & Favre, B. (1976) Fear-dependent variations in continuous avoidance behaviour of pigs. 1. Lack of effect of diazepam on performance of discriminative fear conditioning. Psychopharmacology 49:7578. [SP]CrossRefGoogle ScholarPubMed
Davis, M., Astrachan, D. I. & Kass, E. (1980) Excitatory and inhibitory effects of serotonin on sensorimotor reactivity measured with acoustic startle. Science 209:521–23. [taPS]CrossRefGoogle ScholarPubMed
Davis, M., Kehne, J. H., Commissaris, R. L. & Geyer, M. A. (1984) Effects of hallucinogens on unconditioned behaviors. In: Hallucinogens: Neurochemical, behavioral and clinical perspectives, ed. Jacobs, B. L.. Raven Press. [MAG]Google Scholar
Davis, N. M. & Gray, J. A. (1983) Brain 5-hydroxytryptamine and learned resistance to punishment. Behavioural Brain Research 8:129–37. [taPS]CrossRefGoogle ScholarPubMed
Dawson, T. M., Gehlert, D. R., Snowhill, E. W. & Wamsley, J. (1985) Quantitative autoradiographic evidence for axonal transport of imipramine receptors in the central nervous system of the rat. Neuroscience Letters 55:261–66. [JP]CrossRefGoogle ScholarPubMed
Deakin, J. F. W. (1983) Roles of serotonergic systems in escape, avoidance and other behaviours. In: Theory in psychopharmacology, vol. 2. ed. Cooper, S. J.. Academic Press. [JFWD]Google Scholar
Deakin, J. F. W., File, S. E., Hyde, J. R. G. & MacLeod, N. K. (1979) Ascending 5-HT pathways and behavioral habituation. Pharmacology, Biochemistry and Behavior 10:687–94. [JFWD, taPS]Google Scholar
Delgado, J. M. R. (1975) Inhibitory systems and emotions. In: Emotions: Their parameters and measurements, ed. Levi, L.. Raven Press. [LV]Google Scholar
Delgado, J. M. R., Grau, G., Delgado-Garcia, J. M., & Rodero, J. M. (1976) Effects of diazepam related to social hierarchy in rhesus monkeys. Neuropharmacology 15:409–14. [MJR]CrossRefGoogle ScholarPubMed
De Molina, A. F. & Hunsperger, R. W. (1959) Central representation of affective reactions in forebrain and brain stem: Electrical stimulation of amygdala, stria terminalis, and adjacent structures. Journal of Physiology 145:251–65. [FGG]CrossRefGoogle Scholar
Di Mascio, A. (1973) The effects of benzodiazepines on aggression: Reduced or increased? In: The benzodiazepines, ed. Garattini, S., Mussini, E. & Randall, L. O.. Raven Press. [taPS]Google ScholarPubMed
Dray, A., Davies, J., Oakley, N. R., Tongroach, P. & Vellucci, S. (1978) The dorsal and medial raphe projections to the substantia nigra in the rat: Electrophysiological biochemical and behavioral observations. Brain Research 151:431–42. [taPS]CrossRefGoogle Scholar
Easton, J. D. & Sherman, D. G. (1976) Somatic anxiety attacks and propanolol. Archives of Neurology 33:689–91. [LV]CrossRefGoogle Scholar
Eccles, J. C. (1964) The physiology of synapses. Springer Verlag.CrossRefGoogle Scholar
Edman, G., Åsberg, M., Levander, S. & Schalling, D. (1985) Skin conductance habituation and CSF 5-HIAA in suicidal patients. Archives of General Psychiatry (in press). [DS]Google Scholar
Edmondson, H. D., Roscoe, B. & Vickers, M. D. (1972) Biochemical evidence of anxiety in dental patients. British Medical Journal 4:79. [LV]CrossRefGoogle ScholarPubMed
Ellison, G. D. (1977) Animal models of psychopathology: The low-norepinephrine and low-serotonin rat. American Psychologist 32:1036–45. [MZ]CrossRefGoogle ScholarPubMed
Emson, P. C. (1983) Chemical neuroanatomy. Raven Press. [PRS]Google Scholar
Engel, J. A., Hjorth, S., Svensson, K., Carlsson, A. & Liljequist, S. (1984) Anticonflict effect of the putative serotonin receptor agonist 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT). European Journal of Pharmacology 105:365–68. [SP, LV]CrossRefGoogle ScholarPubMed
Evans, L., Best, J., Moore, G. & Cox, J. (1980) Zimelidine, a serotonin uptake blocker in the treatment of phobic anxiety. Progress in Neuro-Psychopharmacology 4:7579. [FGG, taPS]CrossRefGoogle ScholarPubMed
Eyzenck, H. J. & Eysenck, S. B. G. (1976) Psychoticism as a dimension of personality. Hodder and Stoughton. [DS, MZ]Google Scholar
Eysenck, S. B. G. & Eysenck, H. J. (1977) The place of impulsiveness in a dimensional system of personality description. British Journal of Clinical Psychology 16:5768. [ESB, MZ]Google Scholar
Fechter, L. D. (1974) Central serotonin involvement in the elaboration of the startle reaction in rats. Pharmacology, Biochemistry and Behavior 2:161–71. [taPS]Google ScholarPubMed
Feldman, R. S. & Smith, W. E. (1978) Chlordiazepoxide-fluoxetine interactions on food intake in free-feeding rats. Pharmacology, Biochemistry and Behavior 8:749–52. [taPS]Google ScholarPubMed
Ferrero, P., Guidotti, A., Conti-Tronconi, B. & Costa, E. (1984) A brain octadecaneuropeptide generated by tryptic digestion of DBI (diazepam binding inhibitor) functions as a procondict ligand of benzodiazepine recognition sites. Neuropharmacology 227:1359–62. [JP]CrossRefGoogle Scholar
Fibiger, H. C. & Miller, J. J. (1977) An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra. Neuroscience 2:975–87. [rPS, DW]CrossRefGoogle Scholar
File, S. E. (1977) Effects of parachlorophenylalanine and amphetamine on habituation of orienting. Pharmacology, Biochemistry and Behavior 6:151–56. [taPS]Google Scholar
File, S. E. (1980) Naloxone reduces social and exploratory activity in the rat. Psychopharmacology 71:4144. [SP]CrossRefGoogle ScholarPubMed
File, S. E. & Hyde, J. R. G. (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilisers and of stimulants. Pharmacology, Biochemistry and Behavior 11:6569. [SP]Google ScholarPubMed
File, S. E., Hyde, J. R. & MacLeod, N. C. (1979) 5,7-dihydroxytryptamine lesions of dorsal and median raphe nuclei and performance in the social interaction test of anxiety and in a home-cage aggression test. Journal of Affective Disorders 1:115–22. [taPS]CrossRefGoogle Scholar
Fink, H. & Oelssner, W. (1981) LSD, mescaline and serotonin injected into the medial raphe nucleus potentiate apomorphine hypermotility. European Journal of Pharmacology 75:289–96. [taPS]CrossRefGoogle ScholarPubMed
Fontaine, R., Chouinard, G. & Iny, L. (1985) An open clinical trial of zimelidine in the treatment of obsessive compulsive disorder. Current Therapeutic Research 37:326–32. [rPS]Google Scholar
Fowles, D. C. (1980) The three arousal model: Implications of Gray's two-factor learning theory for heart rate, electrodermal activity, and psychopathy. Psychophysiology 17:87104. [DS]CrossRefGoogle ScholarPubMed
Frank, K. (1959) IRE Transactions on Medical Electronics ME6: 8588. [LV]CrossRefGoogle Scholar
Fry, B. & Ciarlone, A. (1981) Effects of phenytoin on mouse cerebellar 5-hydroxytryptamine and norepinephrine. Neuropsychopharmacology 20:623–25. [ESB]Google ScholarPubMed
Gabay, S. (1981) Serotonergic-dopaminergic interactions: Implications for hyperkinetic disorders. In: Serotonin: Current aspects of neurochemistry and function, ed. Haber, B., Gabay, S., Issidorides, M. R. & Alivisatos, S. G. A.. Plenum. [MAG]Google Scholar
Gardner, D. L. & Cowdry, R. W. (1985) Alprazolam-induced dyscontrol in borderline personality disorder. American Journal of Psychiatry 142:98100. [taPS]Google ScholarPubMed
Gately, P. F., Segal, D. S. & Geyer, M. A. (in press) The behavioral effects of depletions of brain serotonin induced by 5,7-dyhydroxytryptamine vary with time after administration. Behavioral and Neural Biology. [MAG]Google Scholar
Geller, I. & Seifter, J. (1960) The effects of meprobamate, barbiturate, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacology 1:482–92. [taPS]CrossRefGoogle Scholar
Gerson, S. C. & Baldessarini, R. J. (1980) Motor effects of serotonin in the central nervous system. Life Sciences 27:1435–51. [taPS, CHV]CrossRefGoogle ScholarPubMed
Geyer, M. A. (1978) Heterogenous functions of discrete serotonergic pathways in brain. In: New vistas in the biochemistry of mental disorders, ed. Usdin, E. & Mandell, A. J.. Marcel Dekker. [MAG]Google Scholar
Geyer, M. A., Petersen, L. R. & Rose, G. J. (1980) Effects of serotonergic lesions on investigatory responding by rats in a hole-board. Behavioral and Neural Biology 30:160–77. [MAG]CrossRefGoogle Scholar
Geyer, M. A., Puerto, A., Menkes, D. B., Segal, D. S. & Mandel, A. (1976) Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways. Brain Research 106:257–70. [taPS]CrossRefGoogle ScholarPubMed
Geyer, M. A. & Segal, D. S. (1974) Shock-induced aggression: Opposite effects of intraventricularly infused dopamine and norepinephrine. Behavioral Biology 10:99104. [MAG]CrossRefGoogle ScholarPubMed
Giambalvo, C. T. & Snodgrass, S. R. (1978) Biochemical and behavioral effects of serotonin neurotoxins on the nigrostriatal dopamine system: Comparison of injection sites. Brain Research 152:555–66. [taPS]CrossRefGoogle ScholarPubMed
Glogers, S., Grunhaus, L., Birmacher, B. & Troudart, T. (1981) Treatment of spontaneous panic attacks with chlomipramine. American Journal of Psychiatry 138:1215–17. [FGG]Google Scholar
Goodwin, G. M. & Green, A. R. (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT and 5-HT receptors. British Journal of Pharmacology 84:743–53. [SP]CrossRefGoogle Scholar
Graeff, F. G. (1974) Tryptamine antagonists and punished behavior. Journal of Pharmacology and Experimental Therapeutics 189:344–50. [FGG]Google ScholarPubMed
Graeff, F. G. (1976) Effect of cyproheptadine and combinations of cyproheptadine and amphetamine on intermittently reinforced lever pressing in rats. Psychopharmacology 50:6571. [FGG]CrossRefGoogle ScholarPubMed
Graeff, F. G. (1981) Minor tranquilizers and brain defense systems. Brazilian Journal of Medical and Biological Research 14:239–65. [FGG]Google ScholarPubMed
Graeff, F. G. (1984) The anti-aversive action of minor tranquilizers. Trends in Pharmacological Sciences 5:230–33. [FGG]CrossRefGoogle Scholar
Graeff, F. G. (in press) The anti-aversive action of drugs. In: Advances in behavioral pharmacology, Vol. 5, ed. Thompson, T., Dews, P. B. & Barrett, J.. Erlbaum. [FGG]Google Scholar
Graeff, F. G. & Rawlins, J. N. P. (1980) Dorsal periaqueductal gray punishment, septal lesions and the mode of action of minor tranquilizers. Pharmacology, Biochemistry and Behavior 12:4145. [FGG]Google ScholarPubMed
Graeff, F. G. & Schoenfeld, R. I. (1970) Tryptaminergic mechanisms in punished behavior. Journal of Pharmacology and Experimental Therapeutics 173:277–83. [FGG]Google Scholar
Graeff, F. G. & Silveira Filho, N. G. (1978) Behavioral inhibition induced by electrical stimulation of the median raphe nucleus of the rat. Physiology and Behavior 21:477–84. [taPS]CrossRefGoogle ScholarPubMed
Graeff, F. G., Zuardi, A. W., Giglio, J. S., Lima Filho, E. C. & Karniol, I. G. (1985) Effect of metergoline on human anxiety. Psychopharmacology 86:334–38. [FGG]CrossRefGoogle ScholarPubMed
Grahame-Smith, D. G. (1971) Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. Journal of Neurochemistry 18:1053–66. [CHV]CrossRefGoogle ScholarPubMed
Gray, J. A. (1977) Drug effects on fear and frustration: Possible limbic sites of action of minor tranquilisers. In: Handbook of Psychopharmacology, vol. 8: Drugs, neurotransmitters and behaviour, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [SP]Google Scholar
Gray, J. A. (1982) Précis of The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behavioral and Brain Sciences 5:469534. [FGG, taPS, DS, MZ]CrossRefGoogle Scholar
Green, A. & Grahame-Smith, D. (1975) The effect of diphenylhydantoin on brain 5-hydroxytryptamine metabolism and function. Neuropharmacology 14:107–13. [ESB]CrossRefGoogle ScholarPubMed
Guidotti, A., Forchetti, C. M., Corda, M. G., Konkel, D., Bennett, C. D. & Costa, E. (1983) Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptor. Proceedings of the National Academy of Sciences of the U.S.A. 80:3531–35. [LV]CrossRefGoogle Scholar
Hahn, R. A., Hynes, M. D. & Fuller, R. W. (1982) Apomorphine-induced aggression in rats chronically treated with oral clonidine: Modulation by central serotonergic mechanisms. Journal of Pharmacology and Experimental Therapeutics 220:389–93. [taPS]Google ScholarPubMed
Haigler, H. J. & Aghajanian, G. K. (1974) Peripheral serotonin antagonists: Failure to antagonize serotonin in brain areas receiving a prominent serotonergic input. Journal of Neural Transmission 35:257–73. [CHV]CrossRefGoogle ScholarPubMed
Hamon, M., Bourgoin, S., El Mestikawy, S. & Goetz, C. (1984) Central serotonin receptors. In: Handbook of neurochemistry, vol. 6, ed. Lajtha, A.. Plenum Press. [rPS]Google Scholar
Hare, R. D. (1970) Psychopathy: Theory and research. Wiley. [DS]Google Scholar
Harvey, J. A., Schlosberg, J. A. & Yunger, L. M. (1975) Behavioral correlates of serotonin depletion. Federation Proceedings 36:17961801. [taPS]Google Scholar
Herve, D., Simon, H., Blanc, G., LeMoal, M., Glowinski, J. & Tassin, J. P. (1981) Opposite changes in dopamine utilisation in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the rat. Brain Research 216:422–28. [taPS]CrossRefGoogle ScholarPubMed
Hindley, S. W., Paterson, I. A. & Roberts, M. H. T. (1984) Microinjection of methyl-B-carboline-3-carboxylate into nucleus raphe dorsalis reduces social interaction in the rat. British Journal of Pharmacology 81:27p. [JFWD]Google Scholar
Hobbs, A., Paterson, I. A. & Roberts, M. H. T. (1984) The effect on social interaction of microinjections of R. 15–1788 into the nucleus raphe dorsalis of the rat. British Journal of Pharmacology 82:241p. [JFWD]Google Scholar
Hoehn-Saric, R. (1982) Neurotransmitters in anxiety. Archives of General Psychiatry 39:735–44. [JP]CrossRefGoogle ScholarPubMed
Hole, K., Espolin, G. E. & Berge, O. G. (1977) 5,7-dihydroxytryptamine lesions of the ascending 5-hydroxytryptaminergic pathways: Habitation, motor activity and agonistic behavior. Pharmacology, Biochemistry and Behavior 7:205–10. [taPS]Google Scholar
Hole, K., Fuxe, K. & Jonsson, G. (1976) Behavioral effects of 5,7-dihydroxytryptamine lesions of ascending 5-hydroxytryptamine pathways. Brain Research 107:385–99. [DW]CrossRefGoogle Scholar
Hole, K. & Lorens, S. A. (1975) Response to electric shock in rats: Effects of selective midbrain raphe lesions. Pharmacology, Biochemistry and Behavior 3:95102. [taPS]Google ScholarPubMed
Huang, Y. H., Redmond, D. E. Jr., Snyder, D. R. & Maas, J. W. (1976) Loss of fear following bilateral lesions of the locus coeruleus in the monkey. Neurosciences Abstracts 2:573. [LV]Google Scholar
Hunkeler, W., Moehler, H., Pieri, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R. & Haefely, W. (1981) Selective antagonists of benzodiazepines. Nature 290:514–16. [RLC, taPS]CrossRefGoogle ScholarPubMed
Insel, T. R., Ninan, P. T., Aloi, J., Jimerson, D. C., Skolnick, P. & Paul, S. M. (1984) A benzodiazepine receptor-mediated model of anxiety. Archives of General Psychiatry 41:741–50. [MJR]CrossRefGoogle ScholarPubMed
Iversen, S. D. (1983) Where in the brain do benzodiazepines act? In: Benzodiazepines divided, ed. Trimble, M. R.. Wiley. [rPS]Google Scholar
Jackson, H. (1873) On the anatomical and physiological localisation of movements in the brain. Lancet (01 18, 1873, p. 62). [ECA]Google Scholar
Jacobs, B. L. & Cohen, A. (1976) Differential behavioral effects of lesions of the median or dorsal raphe nuclei in rats: Open field and pain-elicited aggression. Journal of Comparative and Physiological Psychology 90:102–8. [MAG]CrossRefGoogle ScholarPubMed
Jacobs, B. L., Foote, S. L. & Bloom, F. E. (1978) Differential projection of neurons within the dorsal raphe nucleus of the rat: A horseradish peroxydase (HRP) study. Brain Research 147:149–53. [taPS]CrossRefGoogle Scholar
Jacobs, B. L., Heym, J. & Steinfels, G. F. (1984) Physiological and behavioral analysis of raphe unit activity. In: Handbook of psychopharmacology, vol. 18, Drugs, neurotransmitters and behavior, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [JP]Google Scholar
Jacobs, B. L., Trimbach, C., Eubanks, E. & Trulson, M. (1975) Hippocampal mediation of raphe lesion- and pCPA-induced hyperactivity in the rat. Brain Research 94:253–61. [taPS, DW]CrossRefGoogle ScholarPubMed
Jacobs, B. L., Wise, W. D. & Taylor, K. M. (1974) Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rat. Brain Research 79:353–61. [MAG]CrossRefGoogle ScholarPubMed
Janssen, P. A. J. (1983) The psychopharmacological profiles and the therapeutic properties in psychiatric practice of a series of potent and selective 5-HT2 receptor blockers (abstract). VII World Congress of Psychiatry, Vienna. [JFWD]Google Scholar
Johnstone, F. C., Owens, D. G. C., Frith, C. D., McPherson, K., Dowie, C., Riley, G. & Gold, A. (1980) Neurotic illness and its response to anxiolytic and antidepressant treatment. Psychological Medicine 10:321–28. [JFWD]CrossRefGoogle ScholarPubMed
Jones, D. L., Mogenson, G. J. & Wu, M. (1981) Injections of dopaminergic, cholinergic, serotonergic and GABAergic drugs into the nucleus accumbens: Effects on locomotor activity in the rat. Neuropharmacology 20:2937. [taPS]CrossRefGoogle Scholar
Jung, R. (1949) Hirnelektrische Untersuchungen über den Electrokrampf: Die Erregungsabläufe in corticalen and subcorticalen Himregionen, bei Katze und Hund. Archiv für Psychiatrie und Nervenkrankheiten 183:206–44. [LV]CrossRefGoogle Scholar
Kahn, M. W. & Kirk, W. E. (1968) The concepts of aggression: A review and reformulation. Psychological Record 18:559–73. [LV]CrossRefGoogle Scholar
Kandel, E. R. (1976) The cellular basis of behavior. Freeman. [PRS]Google Scholar
Kandel, E. R. (1983) From metapsychology to molecular biology: Explorations into the nature of anxiety. American Journal of Psychiatry 140:1277–93. [PRS, taPS]Google ScholarPubMed
Kantak, K. M., Hegstrand, L. R. & Eichelman, B. (1981a) Facilitation of shock-induced fighting following intraventricular 5,7-dihydroxytryptamine and 6-hydroxy DOPA. Psychopharmacology 74:157–60. [taPS]CrossRefGoogle Scholar
Kantak, K. M., Hegstrand, L. R. & Eichelman, B. (1981b) Dietary tryptophan reversal of septal lesion and 5,7-DHT lesion elicited by shock-induced fighting. Pharmacology, Biochemistry and Behavior 15:343–50. [taPS]Google Scholar
Karch, F. E. (1979) Rage reaction associated with clorazepate dipotassium. Annals of Internal Medicine 91:6162. [taPS]CrossRefGoogle ScholarPubMed
Karli, P. (1981) Conceptual and methodological problems associated with the study of brain mechanisms underlying aggressive behaviour. In: The biology of aggression, ed. Brain, P. F. & Benton, D.. Sijthoff and Noordhoff. [PK]Google Scholar
Kataoka, Y., Shibata, K., Gomita, Y. & Ueki, S. (1982) The mammillary body is a potential site of antianxiety action of benzodiazepines. Brain Research 241:374–77. [LV]CrossRefGoogle ScholarPubMed
Katz, R. J. (1980) Role of serotonergic mechanisms in animal models of predation. Progress in Neuro-Psychopharmacology 4:219–31. [taPS]CrossRefGoogle ScholarPubMed
Kaye, W. H., Ebert, M. H., Gwirtsman, H. E. & Weiss, S. R. (1984) Differences in brain serotonergic metabolism between nonbulimic and bulimic patients with anorexia nervosa. American Journal of Psychiatry 141:15981601. [taPS]Google ScholarPubMed
Kilts, C. D., Commissaris, R. L., Cordon, J. J. & Rech, R. H. (1982) Lack of central 5-hydroxytryptamine influence on the antieonflict activity of diazepam. Psychopharmacology 78:156–64. [RLC, taPS]CrossRefGoogle ScholarPubMed
Kilts, C. D., Commissaris, R. L. & Rech, R. H. (1981) Comparison of anti-conflict drug effects in three experimental animal models of anxiety. Psychopharmacology 74:290–96. [RLC, taPS]CrossRefGoogle ScholarPubMed
Kiser, R. S. Jr., German, D. C. & Lebovitz, R. M. (1978) Serotonergic reduction of dorsal central gray area stimulation-produced aversion. Pharmacology, Biochemistry and Behavior 9:2731. [FGG]Google ScholarPubMed
Kiser, R. S. Jr., & Lebovitz, R. M. (1975) Monoaminergic mechanisms in eversive brain stimulation. Physiology and Behavior 15:4753. [FGG]CrossRefGoogle Scholar
Klein, F. G. (1981) Anxiety reconceptualized. In Anxiety: New research and changing perspectives, ed. Klein, D. F. & Rabkin, J.. Raven Press. [JP]Google Scholar
Kohler, C. & Lorens, S. A. (1978) Open-field activity and avoidance behavior following serotonin depletion: A comparison of the effects of parachlorophenylalanine and electrolytic midbrain raphe lesions. Pharmacology, Biochemistry and Behavior 8:223–33. [taPS, DW]Google ScholarPubMed
Kostowski, W., Gumulka, W. & Czlonkowski, A. (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and pretreated with parachlorophenylalanine. Brain Research 48:443–46. [taPS]CrossRefGoogle Scholar
Kozak, W., Valzelli, L. & Garattini, S. (1984) Anxiolytic activity on locus coeruleus-mediated suppression of muricidal aggression. European Journal of Pharmacology 105:323–26. [LV]CrossRefGoogle ScholarPubMed
Kuczenski, R. (1979) Effects of para-chlorophenylalanine on amphetamine and haloperidol-induced changes in striatal dopamine turn-over. Brain Research 164:217–25. [taPS]CrossRefGoogle Scholar
Leaf, R. C., Wnek, D. J., Gay, P. E., Corcia, R. M. & Lamon, S. (1975) Chlordiazepoxide and diazepam induced mouse killing by rats. Psychopharmacologia (Berlin) 44:2328. [taPS]CrossRefGoogle ScholarPubMed
Lehmann, J. (1982) Tryptophan deficiency stupor—A new psychiatric syndrome. Acta Psychiatrica Scandinavica: Supplementum 300, 65:157. [CHV]Google Scholar
Leroux, A. C. & Myers, R. D. (1975) Action of serotonin microinjected into hypothalamic sites at which electrical stimulation produced eversive response in the rat. Physiology and Behavior 14:501–5. [FGG]CrossRefGoogle Scholar
Levi, L., ed. (1975) Emotions: Their parameters and measurement. Raven Press. [LV]Google Scholar
Lidberg, L., Åsberg, M. & Sundquist-Stensman, U. B. (1984) 5-hydroxyindoleacetic acid levels in attempted suicides who have killed their children. Lancet 2:928. [taPS]CrossRefGoogle ScholarPubMed
Liebman, J. M. (1985) Anxiety, anxiolytics and brain stimulation reinforcement. Neuroscience and Biobehavioral Review 9:7586. [FGG]CrossRefGoogle ScholarPubMed
Liebowitz, M. R., Fyer, A. J., McGrath, P. & Klein, D. F. (1981) Clonidine treatment of panic disorder. Psychopharmacology Bulletin 17:122–23. [LV]Google Scholar
Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R. & Goodwin, F. K. (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sciences 33:2609–14. [taPS, DS]CrossRefGoogle ScholarPubMed
Lippa, A. S., Coupet, J., Greenblatt, E. N., Klepner, C. A. & Beer, B. (1979) A synthetic non-benzodiazepine ligand for benzodiazepine receptors: A probe for investigating neuronal substrates of anxiety. Pharmacology, Biochemistry and Behavior 11:99106. [LV]Google ScholarPubMed
Lister, R. G. & File, S. E. (1983) Changes in regional concentrations in the rat brain of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid during the development of tolerance to the sedative action of chlordiazepoxide. Journal of Pharmacy and Pharmacology 35:601–03. [taPS]CrossRefGoogle Scholar
Lloyd, K. G., Farley, I. J., Deck, J. H. N. & Hornykiewicz, O. (1974) Serotonin and 5-hydroxyindoleacetic acid in discrete areas of the brainstem of suicide victims and control patients. In: Serotonin: New vistas, ed. Costa, E., Gessa, G. L. & Sandler, M.. Raven Press. [rPS]Google Scholar
Long, J. B., Youngblood, W. Y. & Kizer, J. S. (1983) Regional differences in the response of serotonergic neurons in rat CNS to drugs. European Journal of Pharmacology 88:8997. [taPS]CrossRefGoogle ScholarPubMed
Lorden, J. F. & Margules, D. L. (1977) Enhancement of conditioned taste aversions by lesions of the midbrain raphe nuclei that deplete serotonin. Physiological Psychology 5:273–79. [DW]CrossRefGoogle Scholar
Lorden, J. F. & Oltmans, G. A. (1978) Alteration of the characteristics of learned taste aversion by manipulation of serotonin levels in the rat. Pharmacology, Biochemistry and Behavior 8:1318. [DW]Google ScholarPubMed
Lorens, S. A. (1978) Some behavioral effects of serotonin depletion depend on method: A comparison of 5,7-dihydroxytryptamine, p-chlorophenylalanine, p-chloroamphetamine and electrolytic raphe lesions. Annals of the New York Academy of Sciences 305:522–55. [MAG, taPS]CrossRefGoogle Scholar
Lorens, S. A., Guldberg, H. C., Hole, K., Kohler, C. & Srebro, B. (1976) Activity, avoidance learning and regional 5-hydroxytryptamine following intra-brain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Research 108:97113. [taPS]CrossRefGoogle Scholar
Lykken, D. (1957) A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology 55:610. [DS]CrossRefGoogle ScholarPubMed
Lynch, M. A., Lindsay, J. & Ounsted, C. (1975) Tranquilizers causing aggression. British Medical Journal 5952:260. [taPS]Google Scholar
Lyness, W. H. & Moore, K. E. (1981) Destruction of 5-hydroxytryptaminergic neurons and the dynamics of dopamine in nucleus accumbens-septi and other forebrain regions of the rat. Neuropharmacology 20:327–34. [taPS]CrossRefGoogle ScholarPubMed
McElroy, J. F., Dupont, A. F. & Feldman, R. S. (1982) The effects of fenfluramine and fluoxetine on the acquisition of a conditioned avoidance response in rats. Psychopharmacology 77:356–59. [taPS]CrossRefGoogle ScholarPubMed
McGuire, M. T., Raleigh, M. J. & Brammer, G. L. (1982) Sociopharmacology. Annual Review of Pharmacology and Toxicology 22:643–61. [MJR]CrossRefGoogle ScholarPubMed
Mackenzie, R. G., Hoebel, B. G., Norelli, C. & Trulson, M. E. (1978) Increased tilt-cage activity after serotonin depletion by 5,7-dihydroxytryptamine. Neuropharmacology 17:957–63. [taPS, DW]CrossRefGoogle ScholarPubMed
Mackintosh, N. J. (1974) The psychology of animal learning. Academic Press. [JFWD]Google Scholar
Margules, D. L. & Stein, L. (1967) Neuroleptics vs. tranquilizers: Evidence from animal behavior studies of mode and site of action. In: Neuropsychopharmacology, ed. Brill, H., Cole, J. O., Deniker, P., Hippius, H. & Bradley, P. B.. Exerpta Medica. [taPS]Google Scholar
Marks, P., O'Brien, M. & Paxinos, G. (1977) 5,7-DHT-induced muricide: Inhibition as a result of exposure of rats to mice. Brain Research 135:383–88. [taPS]CrossRefGoogle ScholarPubMed
Marsden, C. A. & Curzon, G. (1976) Studies on the behavioral effects of tryptophan and p-chlorophenylalanine. Neuropharmacology 15:165–71. [DW]CrossRefGoogle Scholar
Mele, P. C. & Caplan, M. A. (1980) Effects of cinanserin and p-chlorophenylalanine and their interaction with d-amphetamine on DRL performance in rats. Pharmacology, Biochemistry and Behavior 12:883–91. [taPS]Google ScholarPubMed
Messing, R. B., Phebus, L., Fisher, L. & Lythe, L. D. (1975) Analgesic effect of fluoxetine HCL (Lilly 110140), a specific uptake inhibitor for serotonergic neurons. Psychopharmacology Communications 1:511–21. [FGG]Google Scholar
Miczek, K. A. & Gold, L. H. (1983) d-amphetamine in squirrel monkeys of different social status: Effects on social and agonistic behavior, locomotion, and stereotypies. Psychopharmacology 81:183–90. [MJR, taPS]CrossRefGoogle ScholarPubMed
Modigh, K. (1972) Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice. Psychopharmacologia (Berlin) 23:4854. [CHV]CrossRefGoogle ScholarPubMed
Modigh, K. (1973) Effects of L-tryptophan on motor activity in mice. Psychopharmacologia (Berlin) 30:123–34. [CHV]CrossRefGoogle ScholarPubMed
Mokler, D. J. & Rech, R. H. (1983) Diazepam, pentobarbital and methaqualone effects on several behaviors in the rat and antagonism by Ro 15–1788. In: Committee on Problems of Drug dependence. NIDA Research Monograph Series 43:203209. [RLC]Google ScholarPubMed
Montgomery, S. A., Roy, D. & Montgomery, D. B. (1983) The prevention of recurrent suicidal acts. British Journal of Clinical Pharmacology 15:183S188S. [taPS]CrossRefGoogle ScholarPubMed
Montgomery, S. A., Roy, D. & Montgomery, D. B. (1984) HVA in the CSF: A marker for suicidal acts? In: Biological psychiatry: New prospects, ed. Burrows, G. D., Norman, T. R. & Maguire, K. P.. J. Libbey. [taPS]Google Scholar
Morato de Carvalho, S., De Aguiar, J. C. & Graeff, F. G. (1981) Effects of minor tranquilizers, tryptamine antagonists and amphetamine on behavior punished by brain stimulation. Pharmacology, Biochemistry and Behavior 15:351–56. [FCC, taPS]Google ScholarPubMed
Mühlbauer, H. D. & Müller-Oerlinghausen, B. (1985) Fenfluramine Stimulation of serum cortisol in patients with major affective disorders and healthy controls: Further evidence for central serotonergic action of lithium in man. Journal of Neural Transmission 61:8194. [ESB]CrossRefGoogle ScholarPubMed
Müller-Oerlinghausen, B. (1985) Lithium long-term treatment—Does it act via serotonin? Pharmacopsychiatry 18:214–17. [ESB]CrossRefGoogle ScholarPubMed
Murphy, D. L., Campbell, I. C. & Costa, J. L. (1978) The brain serotonergic systems in the affective disorders. Progress in Neuro-Psychopharmacology 3:131. [MZ]Google Scholar
Naranjo, C. A., Sellers, E. M., Roach, C. A., Woodley, D. V., Sanchez-Craig, M. & Sykora, K. (1984) Zimidíne-induced variations in alcohol intake by nondepressed heavy drinkers. Clinical Pharmacology and Therapeutics 35:374–81. [FGG]CrossRefGoogle ScholarPubMed
Nation, J. R. & Boyagian, L. G. (1981) Appetitive performance following exposure to inescapable shocks of short or long duration. American Journal of Psychology 96:605–17. [taPS]CrossRefGoogle Scholar
Nestoros, J. N. (1984) GABAergic mechanisms and anxiety: An overview and a new neurophysiological model. Canadian Journal of Psychiatry 29:520–29. [LV]CrossRefGoogle Scholar
Niehoff, D. L. & Kuhar, M. J. (1983) Benzodiazepine receptors: Localization in rat. Journal of Neuroscience 3:2091–97. [LV]CrossRefGoogle ScholarPubMed
Ninan, P. T., Van Kammen, D. P., Scheinin, M., Linnoila, M., Bunney, W. E. & Goodwin, F. K. (1984) CSF 5-hydroxyindoleacetic acid in suicidal schizophrenic patients. American Journal of Psychiatry 141:566–69. [rPS]Google ScholarPubMed
Nolan, W. A., & Parkes, M. W. (1973) The effects of benzodiazepines on the behaviour of mice on a hole-board. Psychopharmacologia 29:277–88. [taPS]CrossRefGoogle ScholarPubMed
Ogren, S. O. (1985) Central serotonin neurons in avoidance learning: Interactions with noradrenaline and dopamine neurons. Pharmacology, Biochemistry and Behavior 23:107–23. [rPS]Google Scholar
Ogren, S. O., Fuxe, K., Archer, T., Hall, H., Holm, A. L. & Koehler, C. (1981) Studies on the role of central 5-HT neurons in avoidance learning: A behavioral and biochemical analysis. Advances in Experimental Medical Biology 133:681705. [taPS]CrossRefGoogle ScholarPubMed
Olds, M. E. & Olds, J. (1962) Approach-escape interactions in rat brain. American Journal of Physiology 203:803–10. [FGG]CrossRefGoogle ScholarPubMed
Olsen, R. W. (1982) Drug interactions at the GABA receptor-ionophore complex. Annual Review of Pharmacology and Toxicology 22:245–77. [RLC]CrossRefGoogle ScholarPubMed
Oreland, L., Wiberg, A., Åsberg, M., Träskman, L., Sjostrand, L., Thoren, P., Bertilsson, L. & Tybring, G. (1982) Platelet MAO activity and monoamine metabolites in cerebrospinal fluid in depressed and suicidal patients and in healthy controls. Psychiatry Research 4:2129. [taPS]CrossRefGoogle Scholar
Panksepp, J. (1982) Toward a general psychobiological theory of emotions. Behavioral and Brain Sciences 5:407–67. [JP, FGG, MZ]CrossRefGoogle Scholar
Panksepp, J. (1986) The neurochemistry of behavior. Annual Review of Psychology 37:77107. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J., Bean, N. J., Bishop, P., Vilberg, T. & Sahley, T. L. (1980) Opioid blockade and social comfort in chicks. Pharmacology, Biochemistry and Behavior 13:673–83. [JP]Google ScholarPubMed
Panksepp, J., Gandelman, R. & Trowill, J. (1970) Modulation of hypothalamic self-stimulation and escape behavior by chlordiazepoxide. Physiology and Behavior 5:965–69. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J., Meeker, R. & Bean, N. J. (1980) The neurochemical control of crying. Pharmacology, Biochemistry and Behavior 12:437–43. [JP]Google ScholarPubMed
Pappas, B., Vogel, R. A., Wilson, J. H., Mueller, R. & Breese, G. (1981) Drug alterations of punished responding after chlordiazepoxide: Possible screen for agents useful in minimal brain dysfunction. Pharmacology, Biochemistry and Behavior 15:743–46. [taPS]Google ScholarPubMed
Parent, A., Descarries, L. & Beaudet, A. (1981) Organization of ascending serotonergic systems in the adult rat brain. A radio autographic study after intraventricular administration of (3H) 5-hydroxytryptamine. Neuroscience 6:115–38. [taPS]CrossRefGoogle Scholar
Pavlov, I. P. (1927) Conditioned reflexes. Oxford University Press. [PRS]Google Scholar
Pavlov, I. P. (1957) Experimental psychology. Philosophical Library. [LV]Google Scholar
Pellow, S., Chopin, P. & File, S. E. (1985) Are the anxiogenic effects of yohimbine mediated by its action at benzodiazepine receptors? Neuroscience Letters 55:59. [SP]CrossRefGoogle ScholarPubMed
Pellow, S., Chopin, P., File, S. E. & Briley, M. (1985) Validation of open-closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods (in press). [SP]CrossRefGoogle Scholar
Pellow, S. & File, S. E. (1984) Multiple sites of action for anxiogenic drugs: Behavioural, electrophysiological and biochemical correlations. Psychopharmacology 83:304–15. [SP]CrossRefGoogle ScholarPubMed
Penfield, W. (1947) Some observations on the cerebral cortex of man. Proceedings of the Royal Society (London) B134:329–47. [ECA]Google Scholar
Petersen, E. N. & Buus Lassen, J. (1981) A water lick conflict paradigm using drug experienced rats. Psychopharmacology 75:236–39. [taPS]CrossRefGoogle ScholarPubMed
Petersen, E. N. & Scheel-Kruger, J. (1984) Anticonflict effects of 5-HT antagonists by intra-amygdaloid injection. Abstracts of the 14th CINP Congress, Florence, P-339. [SP]Google Scholar
Petersen, E. N. & Scheel-Kruger, J. (1985) 5-HT receptor mediated anticonflict effects in a benzodiazepine sensitive part of the amygdala. Presented at the Fifth European Winter Conference on Brain Research, Vars-les-Claux, France. [rPS]Google Scholar
Petty, F. & Sherman, A. D. (1980) Regional aspects of the prevention of learned helplessness by desipramine. Life Sciences 26:1447–52. [taPS]CrossRefGoogle ScholarPubMed
Petty, F. & Sherman, A. D. (1983) Learned helplessness induction decreases in vivo cortical serotonin release. Pharmacology, Biochemistry and Behavior 18:649–50. [taPS]Google ScholarPubMed
Porsolt, R. D., Bertin, A., Blavet, N., Danieland, M. & Jalfre, M. (1979) Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. European Journal of Pharmacology 57:201–10. [taPS]CrossRefGoogle ScholarPubMed
Post, R. M., Kotin, J., Goodwin, F. K. & Gordon, E. K. (1973) Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. American Journal of Psychiatry 130:6772. [CHV]CrossRefGoogle ScholarPubMed
Poyen, B., Rodor, F., Jouve-Bestagne, M. H., Galland, M. C., Lots, R. & Jouglard, J. (1982). Amnésie et troubles comportementaux d'apparence délictuelle survenus après ingestion de benzodiazépines. Thérapie 37:675–78. [taPS]Google ScholarPubMed
Przewlocka, B., Stala, L. & Scheel-Kruger, J. (1979) Evidence that GABA in the nucleus dorsalis raphe induces stimulation of locomotor activity and eating behavior. Life Sciences 25:937–46. [taPS]CrossRefGoogle ScholarPubMed
Pucilowski, O., Plaznik, A. & Kostowski, W. (1985) Aggressive behavior inhibition by serotonin and quipazine injected into the amygdala in the rat. Behavioral and Neural Biology 43:5868. [LV]CrossRefGoogle ScholarPubMed
Raleigh, M. J., Brammer, G. L. & McGuire, M. T. (1983) Male dominance, serotonergic systems, and the behavioral and physiological effects of drugs in vervet monkeys (Cercopithecus aethiops sabaeus). In: Ethnopharmacology: Primate models of neuropsychiatric disorders, ed. Mìczek, K. A.. Alan R. Liss. [MJR]Google Scholar
Raleigh, M. J., McGuire, M. T., Brammer, G. L. & Yuwiler, A. (1984) Social and environmental influences on blood serotonin concentrations in monkeys. Archives of General Psychiatry 41:405–10. [taPS]CrossRefGoogle ScholarPubMed
Rebec, G. V., Alloway, K. D. & Curtis, S. D. (1981) Apparent serotonergic modulation of the dose-dependent biphasic response of neostriatal neurons produced by d-amphetamine. Brain Research 210:277–89. [taPS]CrossRefGoogle ScholarPubMed
Redmond, D. E. Jr., (1977) Alterations in the function of the nucleus locus coeruleus: A possible model for studies of anxiety. In: Animal models in psychiatry and neurology, ed. Hanin, I. & Usdin, E.. Pergamon Press. [LV]Google Scholar
Redmond, D. E. Jr., (1979) New and old evidence for the involvement of a brain norepinephrine system in anxiety. In: The pehnomenology and treatment of anxiety, ed. Fann, W. E.. Spectrum Press. [LV]Google Scholar
Redmond, D. E. Jr., & Huang, Y. H. (1979) New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sciences 25:2149–62. [JP, MJR, LV]CrossRefGoogle ScholarPubMed
Rescorla, R. A. (1969) Pavlovian conditioned inhibition. Psychological Bulletin 72:7794. [PRS]CrossRefGoogle Scholar
Robbins, T. W. (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264:5759. [taPS]CrossRefGoogle ScholarPubMed
Robinson, T. E. & Vanderwolf, C. H. (1978) Electrical stimulation of the brainstem in freely moving rats. 2. Effects on hippocampal and neocortical electrical activity and relations to behavior. Experimental Neurology 61:485515. [CHV]CrossRefGoogle Scholar
Robinson, T. N. & Zahn, T. P. (1985) Psychoticism and arousal: Possible evidence for a linkage of P and psychopathy. Personality and Individual Differences 6:4766. [DS]CrossRefGoogle Scholar
Rosen, A. J. & Freedman, P. E. (1974) The effects of p-chloroamphetamine on instrumental conditioning in the rat. Neuropharmacology 13:585–90. [taPS]CrossRefGoogle ScholarPubMed
Rossi, J. III, Sahley, T. L. & Panksepp, J. (1983) The role of brain norepinephrine in clonidine suppression of isolation-induced distress in the domestic chick. Psychopharmacology 79:338–39. [JP]CrossRefGoogle ScholarPubMed
Ryan, H. F., Merrill, F. B., Scott, G. E., Krebs, R. & Thompson, B. L. (1968) Increase in suicidal thoughts and tendencies: Association with diazepam therapy. Journal of the American Medical Association 203:135–37. [taPS]Google ScholarPubMed
Rydin, E., Schalling, D. & Åsberg, M. (1982) Rorschach ratings in depressed and suicidal patients with low levels of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Psychiatry Research 7:229–43. [FGG, tarPS, DS]CrossRefGoogle ScholarPubMed
Sainati, S. M. & Lorens, S. A. (1982) Intra-raphe muscimol induced hyperactivity depends on ascending serotonin projections. Pharmacology, Biochemistry and Behavior 17:973–86. [JP, taPS]Google ScholarPubMed
Sainati, S. M. & Lorens, S. A. (1983) Intra-raphe benzodiazepines enhance rat locomotor activity: Interactions with GABA. Pharmacology, Biochemistry and Behavior 18:407–14. [taPS]Google ScholarPubMed
Sanger, D. J. & Blackman, D. E. (1976) Effects of chlordiazepoxide, ripazepam and d-amphetamine on conditioned acceleration timing behaviour in rats. Psychopharmacology 48:209–15. [taPS]CrossRefGoogle ScholarPubMed
Sassenrath, E. N. (1983) Studies in adaptability: Experimental, environmental, and pharmacological influences. In: Hormones, drugs, and social behavior in primates, ed. Steklis, H. D. & Kling, A. S.. Spectrum. [MJR]Google Scholar
Schalling, D. (1978) Psychopathy-related personality variables and the psychophysiology of socialization. In: Psychopathic behaviour: Approaches to research, ed. Hare, R. D. & Schalling, D.. Wiley. [DS]Google Scholar
Schalling, D., Åsberg, M. & Edman, G. (1984) Personality and SCF monoamine metabolites. Department of Psychiatry and Psychology, Karolinska Hospital and the Department of Psychology, University of Stockholm. [rPS, DS, MZ]Google Scholar
Schalling, D., Gronholm, B. & Åsberg, M. (1975) Components of state and trait anxiety as related to personality and arousal. In: Emotions: Their parameters and measurement, ed. Levi, L.. Raven Press. [DS]Google Scholar
Scheel-Kruger, J. & Petersen, E. N. (1982) Anticonflict effect of the benzodiazepines mediated by a GABA-ergic mechanism in the amygdala. European Journal of Pharmacology 82:115–17. [rPS]CrossRefGoogle Scholar
Schenberg, L. C. & Graeff, F. G. (1978) Role of periaqueductal gray substance in the antianxiety action of benzodiazepines. Pharmacology, Biochemistry and Behavior 9:287–95. [FGG]Google ScholarPubMed
Schenberg, L. C., De Aguiar, J. C. & Graeff, F. G. (1983) GABA modulation of the defense reaction induced by brain electrical stimulation. Pharmacology, Biochemistry and Behavior 31:429–37. [FGG]Google ScholarPubMed
Schlesinger, K., Schreiber, R. A. & Pryor, G. T. (1968) Effects of p-chlorophenylalanine on conditioned avoidance learning. Psychonomic Science 11:225–26. [taPS]CrossRefGoogle Scholar
Schoenfeld, R. I. (1976) Lysergic acid diethylamide- and mescaline-induced attenuation of the effect of punishment in the rat. Science 192:801–3. [taPS]CrossRefGoogle ScholarPubMed
Schütz, M. T. B., De Aguiar, J. C. & Graeff, F. G. (1985) Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology 85:340–45. [FGG]CrossRefGoogle ScholarPubMed
Sechenov, I. M. (1878) Elements of thought. Rept. ed. 1943, USSR Academy Scientific Press. [LV]Google Scholar
Sedvall, G., Firo, B., Gullberg, B., Nyback, H., Wiesel, F. A. & Wode-Helgodt, B. (1980) Relationships in healthy volunteers between concentrations of monoamine metabolites in cerebrospinal fluid and family history of psychiatric morbidity. British Journal of Psychiatry 136:366–70. [taPS]CrossRefGoogle ScholarPubMed
Segal, D. S. (1976) Differential effects of para-chlorophenylalanine on amphetamine induced locomotion and stereotypy. Brain Research 116:267–76. [taPS]CrossRefGoogle ScholarPubMed
Sepinwall, J. & Cook, L. (1978) Behavioral pharmacology of antianxiety drugs. In: Handbook of psychopharmacology, vol. 13, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [taPS]Google Scholar
Sewell, R. G., Gallus, J. A., Cault, F. P. & Cleary, J. P. (1982) p-chlorophenylalanine effects on shock-induced attack and pressing responses in rats. Pharmacology, Biochemistry and Behavior 17:945–50. [taPS]Google ScholarPubMed
Shephard, R. A. & Broadhurst, P. L. (1982) Effects of diazepam and of serotonin agonists on hyponeophagia in rats. Neuropharmacology 21:337–40. [taPS]CrossRefGoogle ScholarPubMed
Shephard, R. A., Buxton, D. A. & Broadhurst, P. L. (1982a) Beta-adrenoreceptor antagonists may attenuate hyponeophagia in the rat through a serotonergic mechanism. Pharmacology, Biochemistry and Behavior 16:741–44. [taPS]Google Scholar
Shephard, R. A., Buxton, D. A. & Broadhurst, P. L. (1982b) Drug interactions do not support reduction in serotonin turnover as the mechanism of action of benzodiazepines. Neuropharmacology 21:1027–32. [taPS]CrossRefGoogle Scholar
Shibata, K., Kataoka, Y., Gomita, Y. & Ueki, S. (1982) Localization of the site of the anticonflict action of benzodiazepines in the amygdaloid nucleus of rats. Brain Research 234:442–46. [LV]CrossRefGoogle ScholarPubMed
Simon, P., & Soubrié, P. (1979) Behavioral studies to differentiate anxiolytic and sedative activity of tranquilizing drugs. In: Modern problems in pharmacopsychiatry, ed. Boissier, J. R.. Karger. [tarPS]Google Scholar
Smith, G. J. W. & Carlsson, I. (1983) Creativity and anxiety: An experimental study. Scandinavian Journal of Psychology 24:107–15. [LV]CrossRefGoogle ScholarPubMed
Smith, R. F. (1979) Attenuation of septal lesion-induced shuttlebox facilitation by 5-hydroxytryptophan. Physiological Psychology 7:419–21. [taPS]CrossRefGoogle Scholar
Snyder, S. H. (1980) Brain peptides as neurotransmitters. Science 209:976–83. [PRS]CrossRefGoogle ScholarPubMed
Sokolov, E. N. (1981) Neironnye mehkanizmy pamyati i obucheniya. Moscow: Nauka. [ENS]Google Scholar
Solomon, P. R., Kiney, C. & Scott, D. R. (1978) Disruption of latent inhibition following systemic administration of parachlorophenylalanine (pCPA) Physiology and Behavior 20:265–71. [taPS]CrossRefGoogle ScholarPubMed
Solomon, P. R., Nichols, G. L., Kiernan, J. M. III, Kamer, R. S. & Kaplan, L. J. (1980) Differential effects of lesions of the medial and dorsal raphe of the rat: Latent inhibition and septohippocampal serotonin levels. Journal of Comparative and Physiological Psychology 94:145–54. [PRS, DW]CrossRefGoogle ScholarPubMed
Soubrié, P., Blas, C., Ferron, A. & Glowinski, J. (1983) Chlordiazepoxide reduces in vivo serotonin release in the basal ganglia of “encéphale isolé” but not of anaesthetized cats: Evidence for a dorsal raphé site of action. Journal of Pharmacology and Experimental Therapeutics 226:526–32. [taPS]Google Scholar
Soubrié, P., Reisine, T. D. & Glowinski, J. (1984) Functional aspects of serotonin transmission in the basal ganglia: A review and an in vivo approach using the push-pull cannula technique. Neuroscience 13:605–25. [rPS]CrossRefGoogle Scholar
Soubrié, P., Thiébot, M. H., Simon, P. & Boissier, J. R. (1977) Effets des benzodiazépines sur les phénomènes d'inhibition qui controlent les comportements exploratoires et le recueil de l'information chez le rat. Journal de Pharmacologie (Paris) 8:393403. [taPS]Google Scholar
Srebro, B. & Lorens, S. A. (1975) Behavioral effects of selective midbrain raphe lesions in the rat. Brain Research 89:303–25. [taPS]CrossRefGoogle ScholarPubMed
Standal, J. T. (1977) Pizotifen as an antidepressant. Acta Psychiatrica Scandinavica 56:276–79. [JFWD]CrossRefGoogle ScholarPubMed
Stanley, M. & Mann, J. (1983) Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet 1:214–16. [taPS]CrossRefGoogle ScholarPubMed
Stanley, M., Träskman-Bendz, L. & Dorovini-Zis, K. (1984) Correlations between aminergic metabolites simultaneously obtained from samples of CSF and brain. Presented at 23rd Annual Meeting of the American College of Neuropsychopharmacology, San Juan, Puerto Rico. [fPS]Google Scholar
Stanley, M., Virgilio, J. & Gershon, S. (1982) Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science 216:1337–39. [tarPS]CrossRefGoogle ScholarPubMed
Steinbusch, H. W. M. (1981) Distribution of serotonin immunoreactivity in the central nervous system of the rat: Cells bodies and terminals Neuroscience 6:557618. [taPS]CrossRefGoogle ScholarPubMed
Steklis, H. D., Linn, G. S., Howard, S. M., Kling, A. & Tiger, L. (1983) Progesterone and socio-sexual behavior in stumptailed macaques (Macaca arctoides): Hormonal and socio-environmental interactions. In: Hormones, drugs, and behavior in primates, ed. Steklis, H. D. & Kling, A. S.. Spectrum Publications. [MJR]Google Scholar
Stevens, D. A., Fechter, L. D. & Resnick, O. (1969) The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior. 2. Retardation of passive avoidance learning. Life Sciences 8:379–85. [taPS]CrossRefGoogle Scholar
Stevens, D. A., Resnick, O. & Krus, D. M. (1967) The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior. 1. Facilitation of discrimination learning. Life Sciences 6:2215–20. [taPS, DW]CrossRefGoogle Scholar
Stricker, E. M. & Zigmond, M. J. (1976) Recovery of function after damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome. Progress in Psychobiology and Physiological Psychology 6:121–88. [CHV]Google Scholar
Stroebel, C. F., Szarek, B. L. & Glueck, B. C. (1984) Use of chlomipramine in treatment of obsessive-compulsive symptomatology. Journal of Clinical Psychopharmacology 4:98100. [FGG]CrossRefGoogle ScholarPubMed
Sweeney, D. R., Maas, J. W. & Heninger, G. R. (1978) State anxiety, physical activity, and urinary 3-methoxy-4-hydroxyphenethylene glycol excretion. Archives of General Psychiatry 35:1418–23. [LV]CrossRefGoogle ScholarPubMed
Swonger, A. K. & Rech, R. H. (1972) Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y maze. Journal of Comparative Neurology and Psychology 81:509–22. [taPS]Google Scholar
Tallman, J. F. & Gallager, D. W. (1985) The GABA-ergic system: A locus of benzodiazepine action. Annual Review of Neuroscience 8:2144. [RLC, JP]CrossRefGoogle ScholarPubMed
Tassin, J. P., Reibaud, M., Blanc, G., Studler, J. M. & Glowinski, J. (1984) Regulation of the sensitivity of D1 receptors in the prefrontal cortex and the nucleus accumbens by nondopaminergic pathways. In: Catecholamines: Neuropharmacology and central nervous system, Theoretical aspects, eds. Usdin, E., Carlsson, A., Dahlstrom, A. & Engel, J.A. R. Liss. [taPS]Google Scholar
Taylor, D. P., Allen, L. E., Becker, J. A., Crane, M., Hyslop, D. K. & Riblet, L. A. (1984) Changing concepts of the biochemical action of the anxioselective drug, buspirone. Drug Development Research 4:95108. [SP]CrossRefGoogle Scholar
Tenen, S. S. (1967) The effects of p-chlorophenylalanine, a serotonin depletor, on avoidance acquisition, pain sensitivity and related behavior in the rat. Psychopharmacohgy 10:204–19. [taPS]CrossRefGoogle ScholarPubMed
Thiébot, M. H., Hamon, M. & Soubrié, P. (1982) Attenuation of induced-anxiety in rats by chlordiazepoxide: Role of raphe dorsalis benzodiazepine binding sites and serotonergic neurons. Neuroscience 7:2287–94. [JWFD, taPS]CrossRefGoogle Scholar
Thiébot, M. H., Hamon, M. & Soubrié, P. (1983) The involvement of nigral serotonin innervation in the control of punishment-induced behavioral inhibition in rats. Pharmacology, Biochemistry and Behavior 19:225–29. [MAG, taPS]Google ScholarPubMed
Thiébot, M. H., LeBihan, C., Soubrié, P. & Simon, P. (1985) Benzodiazepines reduce the tolerance to reward delay in rats. Psychopharmacology 87:147–52. [taPS]CrossRefGoogle Scholar
Thiébot, M. H., Soubrié, P., Hamon, M. & Simon, P. (1984) Evidence against the involvement of serotonergic neurons in the anti-punishment activity of diazepam in the rat. Psychopharmacology 52:355–59. [JFWD, FGG, taPS]CrossRefGoogle Scholar
Thiébot, M. H., Soubrié, P., Pays, P. & Simon, P. (1984) Benzodiazepines and waiting capacity for food-reward in rats. Abstracts of the 14th CINP Congress, Florence, F-308. [SP]Google Scholar
Thiébot, M. H., Soubrié, P. & Simon, P. (1985) Is delay of reward mediated by shock-avoidance behavior a critical target for antipunishment effects of diazepam in rats? Psychopharmacology 87:473–79. [rPS]CrossRefGoogle ScholarPubMed
Thompson, R. F. (1976) The search for the engram. American Psychologist 31:209–27. [PRS]CrossRefGoogle ScholarPubMed
Thorén, P., Åsberg, M., Bertilsson, L., Mellstrom, B., Sjoquist, F. & Tráskman, L. (1980) Clomipramine treatment of obsessive-compulsive disorder. 2. Biochemical aspects. Archives of General Psychiatry 37:1289–94. [taPS]CrossRefGoogle Scholar
Thornton, E. W., & Goudie, A. J. (1978) Evidence for the role of serotonin in the inhibition of specific motor responses. Psychopharmacology 60:7379. [taPS]CrossRefGoogle ScholarPubMed
Tobach, E. (1969) Experimental approaches to the study of emotional behavior. Annals of the New York Academy of Sciences 3:6211121. [LV]Google Scholar
Torrubia, R. (1984) Personality, anxiety and susceptibility to punishment: An application of Gray's theory to humans. Doctoral thesis, Autonomous University of Barcelona, Department of Medical Psychology. [DS]Google Scholar
Torrubia, R. & Tobena, A. (1984) A scale for the assessment of susceptibility to punishment as a measure of anxiety: Preliminary results. Personality and Individual Differences 5:371–75. [DS]CrossRefGoogle Scholar
Treiser, S. L., Cascio, C., O'Donohue, S., Jacobowitz, D. & Kellar, K. (1981) Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science 213:1529–31. [ESB]CrossRefGoogle ScholarPubMed
Treit, D. (1985) Evidence that tolerance develops to the anxiolytic effect of diazepam in rats. Pharmacology Biochemistry and Behavior 22:383–87. [rPS]CrossRefGoogle Scholar
Trulson, M. E. & Jacobs, B. L. (1979a) Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Research 163:135–50. [taPS, CHV]CrossRefGoogle ScholarPubMed
Trulson, M. E. & Jacobs, B. L. (1979b) Long-term amphetamine treatment decreases brain serotonin metabolism: Implications for theories of schizophrenia. Science 205:1295–98. [PRS]CrossRefGoogle ScholarPubMed
Trulson, M. E., Preussler, D. W., Howell, G. A. & Frederickson, C. J. (1982) Raphe unit activity in freely moving cats: Effects of benzodiazepines. Neuropharmacology 21:1050–82. [taPS]Google ScholarPubMed
Ts'o, T. O. T. & Chenoweth, M. B. (1976) Comparison between chronic chlordiazepoxide treatment and shock removal in a conflict situation in rats. Neuropharmacology 15:99101. [rPS]CrossRefGoogle Scholar
Tye, N. C., Everitt, B. J. & Iversen, S. D. (1977) 5-hydroxytryptamine and punishment. Nature (London) 268:741–43. [taPS]CrossRefGoogle ScholarPubMed
Tye, N. C., Iversen, S. D. & Green, A. R. (1979) The effects of benzodiazepines and serotonergic manipulations on punished responding. Neuropharmacology 18:689–95. [taPS]CrossRefGoogle ScholarPubMed
Ursin, H. (1971) Limbic control of emotional behavior. In: Proceedings second conference on psychosurgery, ed. Hitchcock, E. R. & Vernet, K.. Thomas. [LV]Google Scholar
Valzelli, L. (1980) An approach to neuroanatomical and neurochemical psychophysiology. C. G. Edizioni Medico Scientifiche. [LV]Google Scholar
Valzelli, L. (1981) Psychobiology of aggression and violence. Raven Press. [LV]Google Scholar
Valzelli, L. (1984) Reflections on experimental and human pathology of aggression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 8:311–25. [LV]CrossRefGoogle ScholarPubMed
Valzelli, L. & Bernasconi, S. (1979) Aggressiveness by isolation and brain serotonin turnover changes in different strains of mice. Neuropsychobiology 5:129–35. [taPS]CrossRefGoogle ScholarPubMed
Valzelli, L., Bernasconi, S. & Dalessandro, M. (1981) Effect of tryptophan administration on spontaneous and p-CPA-induced muricidal aggression in laboratory rats. Pharmacological Research Communications 13:891–97. [LV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1984) Aminergic control of the electrocorticogram. In: Neurobiology of the trace amines, ed. Bouiton, A. A., Baker, G. B., Dewhurst, W. G. & Sandler, M.. Humana Press. [CHV]Google Scholar
Van Praag, H. M. (1983). CSF 5-HIAA and suicide in non-depressed schizophrenics. Lancet 1:977–78. [taPS]CrossRefGoogle Scholar
Vergnes, M. (1978) Interspecific aggression and reactivity in rats: Effects of selective raphe lesions and additional olfactory bulb ablation. Aggressive Behavior 4:207–18. [PK]3.0.CO;2-L>CrossRefGoogle Scholar
Vergnes, M., Bandler, R. & Kempf, E. (1980) Muricide induced by diagonal band damage: Role of 5-HT pathways. Brain Research 185:203–7. [taPS]CrossRefGoogle ScholarPubMed
Vergnes, M. & Kempf, E. (1982) Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. Behavioural Brain Research 5:387–97. [PK]CrossRefGoogle ScholarPubMed
Vergnes, M. & Penot, C. (1976) Effets comportementaux des lésions du raphé chez des rats privés du septum. Brain Research 115:154–59. [PK]CrossRefGoogle ScholarPubMed
Vergnes, M., Penot, C., Kempf, E. & Mack, G. (1977) Lesion selective des neurones serotoninergiques au raphé par la 5,7-dihydroxytryptamine: Effets sur le comportement d'agression inter-spécifique du rat. Brain Research 133:167–71. [taPS]CrossRefGoogle Scholar
Vorhees, C. V. (1979) Facilitation of avoidance acquisition in rats produced by p-chlorophenylalanine or p-chloroamphetamine. Pharmacology, Biochemistry and Behavior 10:569–76. [taPS]Google ScholarPubMed
Vorhees, C. V., Schaeffer, G. J. & Barrett, R. J. (1975) p-chloroamphetamine: Behavioral effects of reduced cerebral serotonin in rats. Pharmacology, Biochemistry and Behavior 3:279–84. [taPS, DW]Google ScholarPubMed
Waddington, J. L. & Crow, T. J. (1979) Rotational responses to serotonergic and dopaminergic agonists after unilateral dihydroxytryptamine lesions of the medial forebrain bundle: Co-operative interactions of serotonin and dopamine in neostriatum. Life Science 25:1307–14. [taPS]CrossRefGoogle ScholarPubMed
Waddington, J. L. & Olley, J. E. (1977) Dissociation of antipunishment activities of chlordiazepoxide and atropine using two heterogeneous passive avoidance tasks. Psychopharmacology 52:9396. [rPS]CrossRefGoogle ScholarPubMed
Waelkens, J., Hoppenbrouwers, M. L., Gelders, Y. & Reyntjens, A. (1982) Pirenperone, a selective serotonin 5-HT-2 receptor blocking agent in the treatment of anxiety and tension states: A placebo-controlled double-blind cross-over study. Proceedings of the 13th CINP Congress, Jerusalem, p. 741. [taPS]Google Scholar
Waldbillig, R. J. (1979). The role of the dorsal and median raphe in the inhibition of muricide. Brain Research 160:341–46. [taPS]CrossRefGoogle ScholarPubMed
Waldmeier, P. C. & Delini-Stula, A. A. (1979) Serotonin-dopamine interactions in the nigrostriatal system. European Journal of Pharmacology 55:363–73. [MAG]CrossRefGoogle ScholarPubMed
Weiss, J. A., Goodman, P. A., Losito, B. G., Corrigan, S., Charry, J. M. & Bailey, W. H. (1981) Behavioral depression produced by an uncontrollable Stressor: Relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Research Review 3:167205. [taPS]CrossRefGoogle Scholar
Westenberg, H. G., Van Praag, H. M., de Jong, J. T. & Thijssen, J. H. (1982) Postsynaptic serotonergic activity in depressive patients: Evaluation of the neuroendocrine strategy. Psychiatry Research 7:361–71. [taPS]CrossRefGoogle ScholarPubMed
Wilbur, R. & Kulik, F. A. (1981) Gray's cybernetic theory of anxiety. Lancet 2(8250):803. [taPS]CrossRefGoogle ScholarPubMed
Wilcock, J. (1968) Gene action and behavior: An evaluation of major gene pleiotropism. Psychological Bulletin 72:129. [LV]CrossRefGoogle Scholar
Williams, J. H. & Azmitia, E. C. (1981) Hippocampal serotonin re-uptake and nocturnal locomotor activity after microinjections of 5,7-DHT in the fornix-fimbria. Brain Research 207:95107. [taPS, DW]CrossRefGoogle Scholar
Wing, L. L. & Wirtshafter, D. (1982) Impaired DRL performance with electrolytic median raphe lesions. Abstracts of the 12th Annual Meeting of the Society for Neuroscience, p. 309. [taPS]Google Scholar
Wirtshafter, D. & Asin, K. E. (1982) Evidence that electrolytic median raphe lesions increase locomotion but not exploration. Physiology and Behavior 28:749–54. [MAG, taPS]CrossRefGoogle Scholar
Wirtshafter, D., Montana, W. & Asin, K. E. (1983) Stimulus discriminability and learning following electrolytic median raphe lesions. Society for Neuroscience Abstracts 9:1173. [DW]Google Scholar
Wise, C. D., Berger, B. D. & Stein, L. (1970) Brain serotonin and conditioned fear. Proccdings of the 78th Annual Convention, American Psychological Association, 821–22. [taPS]CrossRefGoogle Scholar
Wise, C. D., Berger, B. D. & Stein, L. (1972) Benzodiazepines: Anxiety-reducing activity by reduction of serotonin turnover in the brain. Science 117:180–83. [taPS]CrossRefGoogle Scholar
Wise, C. D., Berger, B. D. & Stein, L. (1973) Evidence of alpha-noradrenergic reward receptors and serotonergic punishment receptors in the rat brain. Biological Psychiatry 6:321. [taPS]Google Scholar
Wise, R. A. (1982) Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences 5:3987. [taPS]CrossRefGoogle Scholar
Wurtman, R. J. & Wurtman, J. J. (1983) Nutrients, neurotransmitter synthesis and the control of food intake. Psychiatric Annals 13:854–57. [taPS]CrossRefGoogle Scholar