Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T08:32:42.026Z Has data issue: false hasContentIssue false

Bridled Quail-dove Geotrygon mystacea population assessment after hurricanes Irma and Maria, St. Eustatius, Caribbean Netherlands

Published online by Cambridge University Press:  11 January 2021

FRANK F. RIVERA-MILÁN*
Affiliation:
United States Fish and Wildlife Service, Division of Migratory Bird Management, Branch of Assessments and Decision Support, 11510 American Holly Drive, Laurel, Maryland20708, USA.
HANNAH MADDEN
Affiliation:
Caribbean Netherlands Science Institute, P.O. Box 65, St. Eustatius, Caribbean Netherlands. NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790AB Den Burg, Texel, the Netherlands.
KEVIN VERDEL
Affiliation:
Utrecht University, Heidelberglaan 8, De Uithof, 3584CS, the Netherlands.
*
*Author for correspondence; email: frank_rivera@fws.gov

Summary

Structural vegetation damage and food limitation are important effects of major hurricanes, particularly for fruit/seed-eating, forest-dependent Caribbean birds with restricted distributions and small populations, such as the Bridled Quail-dove Geotrygon mystacea. Motivated by the lack of abundance estimates, corrected for detection probability, we conducted distance-sampling surveys inside and outside the Quill National Park each May in 2016-2019. Detection mode was the most important covariate, with others receiving no support from the data. Detectability of available single individuals and clusters of individuals within 60 m of transect centrelines averaged 0.957 ± 0.114 standard error for audio detections, 0.434 ± 0.052 for visual detections, and 0.693 ± 0.064 for detection modes combined. Availability averaged 0.475 ± 0.138 and the product of detectability and availability averaged 0.329 ± 0.098. Density averaged 1.459 ± 0.277 individuals ha-1 and population size averaged 642 ± 122 individuals in 440 ha. Density did not differ along and away from forest trails, but was higher inside than outside the park and at elevations within 201-400 m than 100-200 m and 401-600 m. Density declined by 76% after hurricanes Irma and Maria in 2017. We suggest that major hurricanes together with free-ranging livestock overgrazing degraded foraging habitats, limited food supply, and caused a population bottleneck. Our methodology can be implemented across the distribution range to assess population status and trends and evaluate the result of management actions at key conservation sites. Bridled Quail-dove populations probably were declining on most islands before the 2017 hurricanes and population status warrants revision.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askins, R. A. and Ewert, D. N. (1991) Impact of Hurricane Hugo on bird populations on St. John, U.S. Virgin Islands. Biotropica 23: 481487.CrossRefGoogle Scholar
Axelrod, F. S (2017) A systematic vademecum to the vascular plants of Sint Eustatius. Fort Worth Texas, USA: Botanical Research Institute.Google Scholar
Beissinger, S. R., Wunderle, J. M. Jr., Meyers, M. J., Sæther, B-E., Engen, S. (2008) Anatomy of a bottleneck: diagnosing factors limiting population growth in the Puerto Rican parrot. Ecol. Monogr. 78: 185203.CrossRefGoogle Scholar
Biasutti, M., Sobel, A. H., Camargo, S. J., Creyts, T. T. (2012) Projected changes in the physical climate of the Gulf Coast and Caribbean. Clim. Change 112: 819845.CrossRefGoogle Scholar
Birdlife International (2008). Important Bird Areas in the Caribbean: key sites for conservation. Cambridge, UK: BirdLife International. (BirdLife Conservation Series No. 15).Google Scholar
BirdLife International (2016) Geotrygon mystacea. The IUCN Red List of Threatened Species 2016 <http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22690958A93296362.en> Downloaded on 18 May 2020CrossRef+Downloaded+on+18+May+2020>Google Scholar
Boal, C. W. (2008) Predation of a dwarf gecko (Sphaerodactylus macrolepis) by a Bridled Quail-dove (Geotrygon mystacea). J. Caribb. Ornithol. 21: 5051.Google Scholar
Boal, C. W. (2011) Bridled Quail-dove (Geotrygon mystacea), Neotropical birds online. T. S. Schulenberg ed. The Cornell Lab of Ornithology, Birds of the World. <https://birdsoftheworld.org/bow/species/brqdov1/cur/introduction> Downloaded on 23 April 2020.+Downloaded+on+23+April+2020.>Google Scholar
Boal, C. W. (2018) Estimates of abundance and longevity of Bridled Quail-doves (Geotrygon mystacea) on Guana Island, British Virgin Islands. Wilson J. Ornithol. 130: 981987.Google Scholar
Boose, E. R., Serrano, M. I. and Foster, D. R. (2004). Landscape and regional impacts of hurricanes in Puerto Rico. Ecol. Monogr. 74: 335352.CrossRefGoogle Scholar
Brokaw, N. V. L. and Walker, L. R. (1991) Summary of the effects of Caribbean hurricanes on vegetation. Biotropica 23: 442447.CrossRefGoogle Scholar
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas, L. (2001) Introduction to distance sampling. Oxford, UK: Oxford University Press.Google Scholar
Buckland, S. T., Rexstad, E. A., Marques, T. A. and Oedekoven, C. S. (2015) Distance sampling: methods and applications . Switzerland: Springer International Publishing AG.CrossRefGoogle Scholar
Burton, F. J. and Rivera-Milán, F. F. (2014) Monitoring a population of translocated Grand Cayman blue iguanas: assessing the accuracy and precision of distance sampling and repeated counts. Anim. Conserv. 17: 4047.CrossRefGoogle Scholar
Collier, N. and Brown, A. (2008) St. Eustatius. Pp. 268271 in Wege, D. C. and Irizarry, V. Anadon, eds. Important bird areas in the Caribbean: key sites for conservation. Cambridge, UK: Birdlife International. (BirdLife Conservation Series No. 15).Google Scholar
Crawley, M. J. (2007) The R book. Hoboken, New Jersey, USA: John Wiley and Sons.CrossRefGoogle Scholar
Debrot, A. O., Hazenbosch, J. C. J., Piontek, S., Kraft, C., van Belle, J. and Strijkstra, A. (2015) Roaming livestock distribution, densities and population estimates for St. Eustatius, 2013. Wageningen, The Netherlands: Institute for Marine Resources and Ecosystem Studies.Google Scholar
Efron, B. and Tibshirani, R. J. (1993) An introduction to the bootstrap. New York, New York, USA: Chapman & Hall.CrossRefGoogle Scholar
Eppinga, M. B. and Pucko, C. A. (2018) The impact of hurricanes Irma and Maria on the forest ecosystems of Saba and St. Eustatius, northern Caribbean. Biotropica 50: 723728.CrossRefGoogle Scholar
Fiske, I. and Chandler, R. (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43: 123.CrossRefGoogle Scholar
Gemmill, D. (2015) Birds of Vieques Island, Puerto Rico: status, abundance, and conservation . Special issue of The Journal of Caribbean Ornithology, BirdsCaribbean. Charlottesville, VA: Scholarly and Specialized Publishing.Google Scholar
Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M. and Gray, W. M. (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293: 474479.CrossRefGoogle ScholarPubMed
Levesque, A. and Mathurin, A. (2008) St. Eustatius. Pp. 183192 in Wege, D. C. and Anadon-Irizarry, V., eds. Important bird areas in the Caribbean: key sites for conservation. Cambridge, UK: Birdlife International. (BirdLife Conservation Series No. 15).Google Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L. and Hines, J. E. (2006) Occupancy estimation and modelling. Burlington, Massachusetts, USA: Elsevier.Google Scholar
Madden, H (2020) Free-roaming livestock distribution, densities and population estimates on St. Eustatius: 2020 update. St. Eustatius, Caribbean Netherlands: Caribbean Netherlands Science Institute.Google Scholar
Madden, H., Van Andel, T., Miller, J., Stech, M., Verdel, K., Eggermont, E. (2019) Vegetation associations and relative abundance of rodents on St. Eustatius, Caribbean Netherlands. Global Ecol. Conserv. 20: e00743.Google Scholar
Marques, T. A., Thomas, L., Fancy, S. G. and Buckland, S. T. (2007) Improving estimates of bird density using multiple-covariate distance sampling. Auk 124: 12291243.CrossRefGoogle Scholar
McNair, D. B., Yntema, L. D., Lombard, C. D., Cramer-Burke, C. and Sladen, F. W. (2005) Records of rare and uncommon birds from recent surveys on St. Croix, United States Virgin Islands. North Am . Birds 59: 539551.Google Scholar
Nichols, J. D., Thomas, L. and Conn, P. B. (2009) Inferences about landbird abundance from count data: recent advances and future directions. Pp. 201235 in Thomson, D. L., Cooch, E. G., and Conroy, M. J., eds. Modelling demographic processes in marked populations. New York, New York, USA: Springer.CrossRefGoogle Scholar
Oppel, S., Hilton, G., Ratcliffe, N., Fenton, C., Daley, J., Gray, G., Vickery, J. and Gibbons, D. (2014) Assessing population viability while accounting for demographic and environmental uncertainty. Ecology 95: 18091818.CrossRefGoogle ScholarPubMed
Platenberg, R. J., Hayes, F. E., McNair, D. B. and Pierce, J. J. (2005) A comprehensive wildlife conservation strategy for the U.S. Virgin Islands. St. Thomas, United States Virgin Islands: Division of Fish and Wildlife.Google Scholar
R Development Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. <www.r-project.org> Downloaded on 23 April 2020.+Downloaded+on+23+April+2020.>Google Scholar
Raffaele, H., Wiley, J., Garrido, O., Keith, A. and Raffaele, J. (1998) A guide to the birds of the West Indies. Princeton, New Jersey, USA: Princeton University Press.Google Scholar
Rivera-Milán, F. F. (1996) Nest density and success of columbids in Puerto Rico. Condor 98: 100113.Google Scholar
Rivera-Milán, F. F. and Schaffner, F. C. (2002) Demography of Zenaida Doves on Cayo del Agua, Culebra, Puerto Rico. Condor 104: 587597.CrossRefGoogle Scholar
Rivera-Milán, F. F., Bertuol, P., Simal, F. and Rusk, B. L. (2015) Distance sampling survey and abundance estimation of the critically endangered Grenada Dove (Leptotila wellsi). Condor 117: 8793.CrossRefGoogle Scholar
Rivera-Milán, F. F., Boomer, G. S. and Martínez, A. (2016) Sustainability assessment of plain pigeons and white-crowned pigeons illegally hunted in Puerto Rico. Condor 118: 300308.CrossRefGoogle Scholar
Rivera-Milán, F. F., Collazo, J. A., Stahala, C., Moore, W. J., Davis, A., Herring, G., Steinkamp, M., Pagliaro, R., Thompson, J. L. and Bracey, W. (2005) Estimation of density and population size and recommendations for monitoring trends of Bahama parrots on Great Abaco and Great Inagua. Wildl. Soc. Bull. 33: s823–834.CrossRefGoogle Scholar
Rivera-Milán, F. F., Ruiz, C. R., Cruz, J. A. and Sustache, J. E. (2003) Reproduction of Plain Pigeons (Columba inornata wetmorei) in east-central Puerto Rico. Auk 120: 466480.CrossRefGoogle Scholar
Rivera-Milán, F. F., Simal, F., Bertuol, P. and Boomer, G. S. (2018) Population monitoring and modelling of Yellow-shouldered Parrot on Bonaire, Caribbean Netherlands. J. Wildl. Biol. 1: 112.Google Scholar
Royle, A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60: 108115.CrossRefGoogle ScholarPubMed
Seaman, G. A. (1966) Foods of the quail dove (Geotrygon mystacea). Caribb. J. Sci. 6: 177179.Google Scholar
Şekercioğlu, Ç. H., Primack, R. B. and Wormworth, J. (2012) The effect of climate change on tropical birds. Biol. Conserv. 148: 118.CrossRefGoogle Scholar
Steadman, D. W., Montambault, Robinson, S. K., Oswalt, S. N., Brandeis, T. J., Londono, A. G., Reetz, M. J., Schelsky, W. M., Wright, N. A., Hoover, J. P., Jankowski, J., Kratter, A. W., Martinez, A. E. and Smith, J. (2009) Relative abundance, habitat use, and long-term population changes of wintering and resident landbirds on St. John, U.S. Virgin Islands. Wilson J. Ornithol. 121: 4153.CrossRefGoogle Scholar
Stouffer, P. C. and Bierregaard, R. O. Jr. (1993) Spatial and temporal abundance patters of Ruddy Quail-doves (Geotrygon montana) near Manaus, Brazil. Condor 95: 896903.CrossRefGoogle Scholar
Thomas, L. and Marques, T. A. (2012) Passive acoustic monitoring for estimating animal density. Acoust. Today 8: 3544.CrossRefGoogle Scholar
Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A. and Burnham, K. P. (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47: 514.CrossRefGoogle ScholarPubMed
Van Andel, T. B., van der Hoorn, M., Stech, S., Bantjes, S. B., Arostegui and Miller, J. (2016) A quantitative assessment of the vegetation types on the island of St. Eustatius, Dutch Caribbean. Global Ecol. Conserv . 7: 5969.CrossRefGoogle Scholar
Waide, R. B. (1991) The effect of Hurricane Hugo on bird populations in the Luquillo Experimental Forest, Puerto Rico. Biotropica 23: 475480.CrossRefGoogle Scholar
Wauer, R. H. and Wunderle, J. M. Jr. (1992) The effects of Hurricane Hugo on bird populations on St. Croix, U.S. Virgin Islands. Wilson Bull. 104: 656673.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A. and Chang, H.-R. (2005) Changes in tropical cyclone numbers, duration, and intensity. Science 309: 18441846.Google Scholar
Wiley, J. W. and Wunderle, J. M. Jr. (1993) The effects of hurricanes on birds, with special reference to Caribbean islands. Bird Conserv. Internatn. 3: 319349.CrossRefGoogle Scholar
Wiley, J. W., Gnam, R. S., Koenig, S., Dornelly, A., Gálvez, X., Bradley, P. E., White, T., Zamore, M., Reillo, P. R. and Anthony, D. (2004) Status and conservation of the family Psittacidae in the West Indies. J. Caribb. Ornithol. Special Issue: 94154.Google Scholar
Wunderle, J. M. Jr. (1995) Responses of bird populations in a Puerto Rican forest to Hurricane Hugo: the first 18 months. Condor 97: 879896.CrossRefGoogle Scholar