Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T15:19:31.334Z Has data issue: false hasContentIssue false

The effect of 1α-hydroxycholecalciferol on the placental transfer of calcium and phosphate in sheep

Published online by Cambridge University Press:  09 March 2007

D. Durand
Affiliation:
I.N.R.A. Theix, 63110 Beaumont, France
G. D. Braithwaite
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT, Berkshire
J.-P. Barlet
Affiliation:
I.N.R.A. Theix, 63110 Beaumont, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The calcium and phosphorus concentrations in foetal tissue or the placental transfer of 45Ca and 32P, or both, were studied in fifty-five control or 1α-hydroxycholecalciferol (1α-(OH)D3)-treated (0·1 μg/kg body-weight per d for 12 d) ewes between 77 and 140 d of gestation.

2. Treatment resulted in a significant increase in the concentration of Ca and P in foetal tissues at all stages of gestation except at 140 d when, it is suggested, foetal mineralization may approach a maximum value.

3. This increase in Ca and P concentration in foetal tissues was associated with an increased placental transfer of Ca, though at 111 and 120 d gestation this increase was not significant. P transfer, which was only measured at 140 d gestation, was also significantly higher in treated animals.

4. The concentrations of Ca and P in both maternal and foetal plasma were increased significantly by the 1α-(OH)D3 treatment.

5. Whereas the concentration of Ca in the plasma of foetuses was always greater than in their dams, the concentration of plasma P in treated animals, unlike controls, was lower in foetuses than dams. This suggests that the increased placental transfer of P, unlike that of Ca, may be a passive rather than an active process.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Barlet, J. P., Davicco, M. J., Lefaivre, J. & Carrillo, B. J. (1979). Horm. metab. Res. 11, 57.Google Scholar
Barlet, J. P., Davicco, M. J., Lefaivre, J. & Garel, J. M. (1978). Adv. exp. Med. Biol. 103, 243.CrossRefGoogle Scholar
Bawden, J. W. & Wolkoff, A. S. (1967). Am. J. Obstet. Gynec. 99, 55.CrossRefGoogle Scholar
Bawden, J. W., Wolkoff, A. S. & Flowers, C. E. (1965). Obstet. Gynec. 25, 548.Google Scholar
Braithwaite, G. D. (1978). Br. J. Nutr. 40, 387.CrossRefGoogle Scholar
Braithwaite, G. D. (1980). Br. J. Nutr. 44, 183.CrossRefGoogle Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddi, Sh. (1969). Br. J. Nutr. 23, 827.CrossRefGoogle Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddi, Sh. (1970). Br. J. Nutr. 24, 661.CrossRefGoogle Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddi, Sh. (1972). Br. J. Nutr. 27, 417.CrossRefGoogle Scholar
Bruns, M. E. H., Fausto, A. & Avioli, L. (1978). J. biol. Chem. 253, 3186.CrossRefGoogle Scholar
Christakos, S. & Norman, A. W. (1980). Fedn Proc. Fedn Am. Soc. exp. Biol. 39, 560.Google Scholar
Comar, C. L. (1956). Ann. N. Y. Acad. Sci. 64, 281.CrossRefGoogle Scholar
Delorme, A. C., Marche, P. & Garel, J. M. (1979). J. devel. Physiol. 1, 181.Google Scholar
Durand, D., Barlet, J. P. & Braithwaite, G. D. (1983). Reprod. Nutr. Devel. 23, (In the Press.)Google Scholar
Field, A. C. & Suttle, N. F. (1967). J. agric. Sci., Camb. 69, 417.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Garel, J. M., Care, A. D. & Barlet, J. P. (1974). J. Endocr. 62, 497.CrossRefGoogle Scholar
Garel, J. M., Delorme, A. C., Marche, P., Nguyen, T. M. & Garabedian, M. (1981). Endocrinology 109, 284.CrossRefGoogle Scholar
Goff, J. P., Horst, R. L. & Littledike, E. T. (1982). J. Nutr. 112, 1387.CrossRefGoogle Scholar
Holick, M. F., Tavela, T. E., Holick, S. A., Schnoes, H. K., De Luca, H. F. & Gallagher, B. M. (1976). J. biol. Chem. 251, 1020.CrossRefGoogle Scholar
McDonald, I., Robinson, J. J., Fraser, C. & Smart, R. I. (1979). J. agric. Sci., Camb. 92, 591.CrossRefGoogle Scholar
Marche, P., Delorme, A. C. & Cuisinier-Gleizes, P. (1978). Life Sci. 23, 2555.CrossRefGoogle Scholar
Pike, J. W., Goozé, L. L. & Haussler, M. R. (1980). Life Sci. 26, 407.CrossRefGoogle Scholar
Ross, R., Care, A. D., Taylor, C. M., Pelc, B. & Sommerville, B. A. (1979). In Vitamin D. Basic Research and Clinical Implications, p. 341 [Norman, A. W., Schaeffer, K., Herrath, D. V., Grigoleit, H. G., Coburn, J. W., De Luca, H. F., Mawer, E. B. and Suda, T., editors]. Berlin: De Gruyter.CrossRefGoogle Scholar
Symonds, H. W., Manston, R., Payne, J. M. & Sansom, B. F. (1966). Br. vet. J. 122, 196.CrossRefGoogle Scholar
Technicon Instruments Corporation (1967). Technicon Method Sheet N-4B. Tarry Town, New York: Technicon Instruments Corporation.Google Scholar
Tuan, R. S. (1982). Placenta 3, 145.Google ScholarPubMed
Twardock, A. R. (1967). Am. J. Physiol. 213, 837.CrossRefGoogle Scholar
Wasserman, R. H., Comar, C. L., Nold, M. M. & Lengemann, F. W. (1957). Am. J. Physiol. 189, 91.CrossRefGoogle Scholar