Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T11:51:32.484Z Has data issue: false hasContentIssue false

The effect of forage and forage–concentrate diets on rumen fermentation and metabolism of nutrients by the mesenteric- and portal-drained viscera in growing steers

Published online by Cambridge University Press:  09 March 2007

C. J. Seal
Affiliation:
Department of Biological and Nutritional Sciences, Faculty of Agriculture and Biological Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
D. S. Parker
Affiliation:
Department of Biological and Nutritional Sciences, Faculty of Agriculture and Biological Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
P. J. Avery
Affiliation:
Department of Mathematics and Statistics, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Growing Friesian steers chronically catheterized in the anterior mesenteric and portal veins were used to study the influence of feeding with either a forage or forage–concentrate diet on nutrient utilization by mucosal tissue. When animals were consuming the forage–concentrate diet the molar proportion of propionate in rumen fluid was significantly increased, although production rate as measured by isotope dilution was not altered. Net rates of absorption of VFA into portal blood when compared with rumen production rates underlined the extent to which metabolism within mucosal tissue modifies the propionate supply to the liver. Net glucose utilization by splanchnic tissue was shown to be significantly lower on the forage–concentrate diet. There were no effects of diet on whole-body glucose turnover or on the proportion of glucose derived from propionate. Animals fed on the forage–concentrate diet had significantly lower concentrations of circulating essential amino acids, due mainly to a reduction in branched-chain amino acid levels. There was net absorption of all amino acids by animals on both diets except for glutamate, glutamine and taurine in forage-fed animals.

Type
Metabolic Effects of Diet
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Agricultural Research Council (1984) The Nutrient Requirements of Ruminant Livestock, Suppl no. 1. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Armentano, L. E. & Young, J. W. (1983). Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics. Journal of Nutrition 113, 12651277.CrossRefGoogle ScholarPubMed
Baker, R. J. & Nelder, J. A. (1978) GLM Systems Release 3. Oxford: Numerical Algorithms Group.Google Scholar
Bauman, D. E., Davis, C. L. & Bucholz, H. F. (1971) Propionate production in the rumen of cows fed either a control or high-grain, low-fiber diet. Journal of Dairy Science 54, 12821287.CrossRefGoogle ScholarPubMed
Beever, D. E. & Siddons, R. C. (1985). Digestion and metabolism in the growing ruminant. In Control of Digestion and Metabolism in Ruminants, pp. 479497 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Bergen, W. G. (1979) Free amino acids in blood of ruminants. Physiological and nutritional regulation. Journal of Animal Science 49, 15771589.CrossRefGoogle ScholarPubMed
Bergman, E. N. & Wolff, J. E. (1971) Metabolism of volatile fatty acids by liver and portal-drained viscera in sheep. American Journal of Physiology 221, 586592.CrossRefGoogle ScholarPubMed
Bergmeyer, H. U. & Beutler, H. O. (1985). Ammonia. In Methods of Enzymatic Analysis, Vol. 8, pp. 454461 [Bergmeyer, H. U. editor]. Weinheim, Germany: V. C. H. Verlagsgesellschaft.Google Scholar
Broderick, G. A. & Wallace, R. J. (1988) Effects of dietary nitrogen source on concentrations of ammonia, free amino acids and fluorescamine-reactive peptides in the sheep rumen. Journal of Animal Science 66, 22332238.CrossRefGoogle Scholar
Burrin, D. G., Ferrell, C. L., Eisemann, J. H., Britton, R. A. & Nieraber, J. A. (1989) Effect of level of nutrition on splanchnic blood flow and oxygen consumption in sheep. British Journal of Nutrition 62, 2334.CrossRefGoogle ScholarPubMed
Edelstone, D. I. & Holzman, I. R. (1981). Gastrointestinal tract O2 uptake and regional blood flow during digestion in conscious newborn lambs. American Journal of Physiology 241, G289G293.Google Scholar
Fitch, N. A., Gill, M., Lomax, M. A. & Beever, D. E. (1989) Nitrogen and glucose metabolism by the liver of forage-and forage–concentrate-fed cattle. Proceedings of the Nutrition Society 48, 76A.Google Scholar
Gill, M. & Beever, D. E. (1982) The effect of protein supplementation on digestion and glucose metabolism in young cattle fed silage. British Journal of Nutrition 48, 3747.CrossRefGoogle Scholar
Heitman, R. N. & Bergman, E. N. (1978). Glutamine metabolism, interorgan transport and glucogenicity in the sheep. American Journal of Physiology 234, E197E203.Google Scholar
Herbein, J. H., Van Maanen, R. W., McGilliard, A. D. & Young, J. W. (1978) Rumen propionate and blood glucose kinetics in growing cattle fed isoenergetic diets. Journal of Nutrition 108, 9941001.CrossRefGoogle ScholarPubMed
Hume, I. D., Jacobson, D. R. & Mitchell, G. E. Jr. (1972) Quantitative studies on amino acid absorption in sheep. Journal of Nutrition 102, 495506.CrossRefGoogle ScholarPubMed
Huntington, G. B. (1984) Net absorption of glucose and nitrogenous compounds in lactating Holstein cows. Journal of Dairy Science 67, 19191927.CrossRefGoogle ScholarPubMed
Huntington, G. B. (1986) Uptake and transport of nonprotein nitrogen by the ruminant gut. Federation Proceedings 45, 22722276.Google ScholarPubMed
Huntington, G. B. (1988) Hepatic urea synthesis and site and rate of urea removal from blood of beef steers fed Alfalfa hay or a high concentrate diet. Canadian Journal of Animal Science 69, 215223.CrossRefGoogle Scholar
Huntington, G. B. & Prior, R. L. (1983) Digestion and absorption of nutrients by beef heifers fed a high concentrate diet. Journal of Nutrition 113, 22802288.CrossRefGoogle ScholarPubMed
Huntington, G. B. & Prior, R. L. (1985) Net absorption of amino acids by portal-drained viscera and hind half of beef cattle fed a high concentrate diet. Journal of Animal Science 60, 14911499.CrossRefGoogle ScholarPubMed
Huntington, G. B. & Tyrrell, H. F. (1985) Oxygen consumption by portal-drained viscera of cattle: comparison of analytical methods and relationship to whole-body oxygen consumption. Journal of Dairy Science 68, 27272731.CrossRefGoogle ScholarPubMed
Janes, A. N., Weekes, T. E. C. & Armstrong, D. G. (1985) Absorption and metabolism of glucose by the mesenteric-drained viscera of sheep fed on dried-grass or ground, maize-based diets. British Journal of Nutrition 54, 449458.CrossRefGoogle ScholarPubMed
Jones, G. B. (1965) Determination of the specific activity of labeled blood glucose by liquid scintillation using glucose pentaacetate. Analytical Biochemistry 12, 249258.CrossRefGoogle ScholarPubMed
Judson, G. J. & Leng, R. A. (1968) Effect of diet on glucose synthesis in sheep. Proceedings of the Australian Society of Animal Production 7, 354358.Google Scholar
Katz, M. L. & Bergman, E. N. (1969) Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. American Journal of Physiology 216, 946952.CrossRefGoogle ScholarPubMed
Kelly, J. M. & McBride, B. W. (1990) The sodium pump and other mechanisms of thermogenesis in selected tissues. Proceedings of the Nutrition Society 49, 185202.CrossRefGoogle ScholarPubMed
Leng, R. A., Steel, J. W. & Luick, J. R. (1967) Contribution of propionate to glucose synthesis in sheep. Biochemical Journal 103, 785790.CrossRefGoogle ScholarPubMed
Lindsay, D. B. & Williams, R. L. (1971) The effect on glucose entry rate of abomasal protein infusion in sheep. Proceedings of the Nutrition Society 30, 35A.Google ScholarPubMed
Lloyd, B., Burrin, J., Smythe, P. & Alberti, K. G. M. M. (1978) Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol and 3-hydroxybutyrate. Clinical Chemistry 24, 17241729.CrossRefGoogle ScholarPubMed
McBride, B. W. & Milligan, L. P. (1985). Influence of feed intake and starvation on the magnitude of Na+-K+-ATPase-dependent respiration in duodenal mucosa of sheep. British Journal of Nutrition 53, 605614.CrossRefGoogle ScholarPubMed
Mangan, J. L. (1972) Quantitative studies on nitrogen metabolism in the bovine rumen. British Journal of Nutrition 27, 261283.CrossRefGoogle ScholarPubMed
Mercer, J. R. & Miller, E. L. (1982) Effect of diet and infusion of volatile fatty acids into the rumen on the concentration of plasma free amino acids in sheep. British Journal of Nutrition 48, 519526.CrossRefGoogle ScholarPubMed
Moore, R. B. & Kauffman, N. J. (1970) Simultaneous determination of citrulline and urea using diacetyl monoxime. Analytical Biochemistry 33, 263272.CrossRefGoogle Scholar
Prior, R. L., Huntington, G. B. & Britton, R. A. (1981) Influence of diet on amino acid absorption in beef cattle and sheep. Journal of Nutrition 111, 22122222.CrossRefGoogle ScholarPubMed
Reynolds, C. K. & Huntington, G. B. (1988a) Partition of portal-drained visceral net flux in beef steers. 1. Blood flow and net flux of oxygen, glucose and nitrogenous compounds across stomach and posterior-stomach tissues. British Journal of Nutrition 60, 539551.CrossRefGoogle ScholarPubMed
Reynolds, C. K. & Huntington, G. B. (1988b) Partition of portal-drained visceral net flux in beef steers. 2. Net flux of volatile fatty acids, D-β-hydroxyl butyrate and L-lactate across stomach and post-stomach tissues. British Journal of Nutrition 60, 553562.CrossRefGoogle ScholarPubMed
Reynolds, C. K., Huntington, G. B., Tyrell, H. F. & Reynolds, P. J. (1986) Splanchnic tissue and whole animal oxygen consumption by lactating Holstein cows. Journal of Dairy Science 69, Suppl. 1, 193.Google Scholar
Sakata, T. & Tamata, H. (1978) Rumen epithelium cell proliferation accelerated by propionate and acetate. Journal of Dairy Science 62, 4952.CrossRefGoogle Scholar
Schelling, G. T., Hinds, F. C. & Hatfield, E. E. (1967) Effect of dietary protein levels, amino acid supplementation and nitrogen source upon the plasma free amino acid concentrations in growing lambs. Journal of Nutrition 92, 339347.CrossRefGoogle ScholarPubMed
Seal, C. J., Sarker, A. & Parker, D. S. (1989) Rumen propionate production rate and absorption of fermentation end-products into the portal vein of forage- and forage–concentrate-fed cattle. Proceedings of the Nutrition Society 48, 143A.Google Scholar
Smith, N. E. & Baldwin, R. L. (1974) Effects of breed, pregnancy and lactation on weight of organs and tissues in dairy cattle. Journal of Dairy Science 57, 10551060.CrossRefGoogle Scholar
Sniffen, C. J. & Jacobson, D. R. (1975) Net amino acid absorption in steers fed alfalfa hay cut at two stages of maturity. Journal of Dairy Science 58, 371385.CrossRefGoogle Scholar
Stevens, C. E. & Stettler, B. K. (1966) Factors affecting the transport of volatile fatty acids across rumen epithelium. American Journal of Physiology 210, 365372.CrossRefGoogle ScholarPubMed
Sutton, J. D. (1985) Digestion and absorption of energy substrates in the lactating cow. Journal of Dairy Science 68, 33763393.CrossRefGoogle Scholar
Symonds, H. W. & Baird, G. D. (1973) Cannulation of a hepatic vein, the portal vein and a mesenteric vein in the cow and its use in the measurement of blood flow rates. Research in Veterinary Science 14, 267269.CrossRefGoogle Scholar
Tagari, H. & Bergman, E. N. (1978) Intestinal disappearance and portal blood appearance of amino acids in sheep. Journal of Nutrition 108, 790803.CrossRefGoogle ScholarPubMed
Ulyatt, M. J., Whitelaw, F. G. & Watson, F. G. (1970) The effect of diet on glucose entry rates in sheep. Journal of Agricultural Science, Cambridge 75, 565570.CrossRefGoogle Scholar
Van Maanen, R. W., Herbein, J. H., McGilliard, A. D. & Young, J. W. (1978) Effects of monensin on in vivo rumen propionate production and blood glucose kinetics in cattle. Journal of Nutrition 108, 10021007.CrossRefGoogle ScholarPubMed
Veenhuizen, J. J., Russell, R. W. & Young, J. W. (1988). Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate. Journal of Nutrition 118, 13661375.CrossRefGoogle ScholarPubMed
Webster, A. J. F., Osumi, P. O., White, F. & Lingram, J. F. (1975) The influence of food intake on portal blood flow and heat production in the digestive tract of sheep. British Journal of Nutrition 34, 13661375.CrossRefGoogle ScholarPubMed
Weekes, T. E. C. & Webster, A. J. F. (1975) Metabolism of propionate in the tissues of the sheep gut. British Journal of Nutrition 33, 425438.CrossRefGoogle Scholar
Weighart, M., Slepetis, R., Elliot, J. M. & Smith, D. F. (1986) Glucose absorption and hepatic gluconeogenesis in dairy cows fed on diets varying in forage content. Journal of Nutrition 116, 839850.CrossRefGoogle Scholar
White, R. G., Steel, J. E., Leng, R. A. & Luick, J. R. (1969) Evaluation of three isotope-dilution techniques for studying the kinetics of glucose metabolism in sheep. Biochemical Journal 114, 203214.CrossRefGoogle ScholarPubMed
Wilton, J. C. (1990). The effect of ammonia upon the metabolism of carbohydrates and amino acids in the liver of growing steers offered silage. PhD Thesis, University of Reading.Google Scholar
Windmueller, H. G. & Spaeth, A. E. (1978) Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry 253, 6976.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate and aspartate. Journal of Biological Chemistry 225, 107112.CrossRefGoogle Scholar
Wolff, J. E., Bergman, E. N. & Williams, H. H. (1972) Net metabolism of plasma amino acids by liver and portal-drained viscera of fed sheep. American Journal of Physiology 223, 438446.CrossRefGoogle ScholarPubMed
Yost, W. M., Young, J. W., Schmidt, S. P. & McGilliard, A. D. (1977) Gluconeogenesis in ruminants: propionic acid production from a high-grain diet fed to cattle. Journal of Nutrition 107, 20362043.CrossRefGoogle ScholarPubMed