Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T17:35:04.389Z Has data issue: false hasContentIssue false

Effect of oat saponins on plasma and liver lipids in gerbils (Meriones unguiculatus) and rats

Published online by Cambridge University Press:  09 March 2007

G. Önning
Affiliation:
Department of Applied Nutrition and Food Chemistry, Chemical Centre, University of Lund, Box 124, S-221 00 Lund, Sweden
N.-G. Asp
Affiliation:
Department of Applied Nutrition and Food Chemistry, Chemical Centre, University of Lund, Box 124, S-221 00 Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of oat saponins (a mixture of avenacosides A and B) on plasma and liver lipids in gerbils (Meriones unguiculatus) and rats were investigated. Cholesterol-containing diets high in total and saturated fat and with different avenacoside contents (zero (ethanol-extracted oats), normal (oats) and twice normal (ethanol-extracted oats plus added avenacosides)) were used. Compared with a cellulose control group the oat diets in both species gave a significantly higher cholesterol content in the HDL fraction and a significantly lower liver cholesterol content. No significant differences in total plasma cholesterol, HDL-cholesterol and plasma triacylglycerols were found, however, between the groups fed on oats with different avenacoside content. The liver weight, total liver cholesterol and free liver cholesterol were also similar, whereas the liver lipid content was significantly lower in rats given the highest amount of avenacosides compared with zero or normal amounts. The tendency was the same in gerbils. Thus, the oat saponins had only minor effects on lipid metabolism in gerbils and rats.

Type
Lipid metabolism and the effect of complex carbohydrates
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Andersen, D. B. & Holub, B. J. (1982). Effects of dietary cholesterol and type of dietary carbohydrate on hepatic and plasma glycerides and phospholipids in the gerbil. Journal of Nutrition 112, 14251436.CrossRefGoogle ScholarPubMed
Andersson, H. (1992). The ileostomy model for the study of carbohydrate digestion and carbohydrate effects on sterol excretion in man. European Journal of Clinical Nutrition 46, Suppl. 2, S69S76.Google Scholar
Asp, N.-G., Johansson, C.-G. & Siljeström, M. (1983). Rapid enzymatic assay of insoluble and soluble dietary fibre. Journal of Agricultural Food Chemistry 31, 476482.CrossRefGoogle Scholar
Asp, N.-G., Mattsson, B. & Önning, G. (1991). Variation in dietary fibre, β-glucan, starch, protein, fat and hull content of oats grown in Sweden 1987–1989. European Journal of Clinical Nutrition 46, 3137.Google Scholar
Berg, H. (1990). Analysis of Fatty Acids. Intern Analysföreskrift. Kävlinge, Sweden: Swedish Meat Research Institute.Google Scholar
Bourgeois, C. F., Hel, S. H., Belliot, J. P., George, P. R. & Slomianny, C. A. (1985). Disposable cartridge extraction of retinol and α-tocopherol from feedstuffs. Journal of the Association of Official Analytical Chemists 68, 11211125.Google ScholarPubMed
Calvert, G. D. & Yeates, R. A. (1982). Adsorption of bile salts by soya-bean flour, wheat bran, lucerne (Medicago sativa), sawdust and lignin; the effect of saponins and other plant constituents. British Journal of Nutrition 59, 4955.Google Scholar
Carlson, S. E. & Goldfarb, S. (1977). A sensitive enzymatic method for the determination of free and esterified tissue cholesterol. Clinica Chimica Acta 79, 575582.CrossRefGoogle ScholarPubMed
Chen, W.-J. L. & Anderson, J. W. (1984). Propionate may mediate the hypocholesterolemic effects of plant fibres in cholesterol fed rats. Proceedings of the Society for Experimental Biology and Medicine 175, 215218.CrossRefGoogle ScholarPubMed
Chen, W.-J. L., Anderson, J. W. & Gould, M. R. (1981). Effects of oat bran, oat gum and pectin on lipid metabolism of cholesterol-fed rats. Nutrition Reports International 24, 10931098.Google Scholar
EU, Method. (1971). Crude fat determination. Official Journal of the European Communities L279, 995.Google Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Gordon, S. & Cekleniak, W. P. (1961). Serum lipoprotein pattern of the hypercholesterolemic gerbil. American Journal of Physiology 201, 2728.CrossRefGoogle Scholar
Häkansson, B., Jägerstad, M. & Öste, R. (1987). Determination of vitamin E in wheat products by HPLC. Journal of Micronutritional Analysis 3, 307318.Google Scholar
Hegsted, D. M. & Gallagher, A. (1967). Dietary fat and cholesterol and serum cholesterol in the gerbil. Journal of Lipid Research 8, 210214.CrossRefGoogle ScholarPubMed
Holm, J., Björck, I., Drews, A. & Asp, N.-G. (1986). A rapid method for the analysis of starch. Starch 7, 224226.CrossRefGoogle Scholar
Illman, R. J. & Topping, D. L. (1985). Effects of dietary oat bran on faecal steroid excretion, plasma volatile fatty acids and, lipid synthesis in rats. Nutrition Research 5, 839846.CrossRefGoogle Scholar
Johnson, I. T., Gee, J. M., Price, K. R., Curl, C. L. & Fenwick, G. R. (1986). Influence of saponins on gut permeability and active nutrient transport in vitro. Journal of Nutrition 116, 22702277.CrossRefGoogle ScholarPubMed
Kritchevsky, D., Tepper, S. A., Goodman, G. T., Weber, M. M. & Klurfeld, D. M. (1984). Influence of oat and wheat bran on cholesterolemia in rats. Nutrition Reports International 29, 13531359.Google Scholar
Leach, A. B. & Holub, B. J. (1984). The effect of dietary lipid on the lipoprotein status of the Mongolian gerbil. Lipids 19, 2533.CrossRefGoogle ScholarPubMed
Lütz, C. (1980). The determination of prolamellar bodies and saponins in etioplasts and leaves of Avena sativa L. Zeitung für Naturforschung 35c, 519521.CrossRefGoogle Scholar
McCleary, B. V. & Glennie-Holmes, M. (1985). Enzymic quantification of (1–3)(1–4)-β-D-glucan in barley and malt. Journal of the Institute of Brewing 91, 285295.CrossRefGoogle Scholar
Mercer, N. J. H. & Holub, B. J. (1991). Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using [3H]water: diurnal variation and effect of type of dietary fat. Journal of Lipid Research 22, 792799.CrossRefGoogle Scholar
Nicolosi, R. J., Marlett, J. A., Morello, A. M., Flanagan, S. A. & Hegsted, D. M. (1981). Influence of dietary unsaturated and saturated fat on the plasma lipoproteins of Mongolian gerbils. Atherosclerosis 38, 359371.CrossRefGoogle ScholarPubMed
Nyman, M., Schweizer, T. F., Tyrén, S., Reimann, S. & Asp, N.-G. (1990). Fermentation of vegetable fiber in the intestinal tract of rats and effects on faecal bulking and bile acid excretion. Journal of Nutrition 120, 459466.CrossRefGoogle ScholarPubMed
Oakenfull, D. G., Fenwick, D. E. & Hood, R. L. (1979). Effects of saponins on bile acids and plasma lipids in the rat. British Journal of Nutrition 42, 209216.CrossRefGoogle ScholarPubMed
Oakenfull, D. G., Topping, D. L., Illman, R. J. & Fenwick, D. E. (1984). Prevention of dietary hyper-cholesterolaemia in the rat by soya bean and Quillaja saponins. Nutrition Reports International 29, 10391045.Google Scholar
Önning, G. & Asp, N.-G. (1993). Analysis of saponins in oat kernels. Food Chemistry 48, 301305.CrossRefGoogle Scholar
Önning, G., Juillerat, M. A., Fay, L. & Asp, N.-G. (1994). Degradation of oat saponins during heat processing-effect of pH, stainless steel and iron at different temperatures. Journal of Agricultural Food Chemistry 42, 25782582.CrossRefGoogle Scholar
Potter, J. D., Illman, R. J., Calvert, G. D., Oakenfull, D. G. & Topping, D. L. (1980). Soya saponins, plasma lipids, lipoproteins and faecal bile acids: a double blind cross-over study. Nutrition Reports International 22, 521528.Google Scholar
Potter, S. M., Jiminez-Flores, R., Pollack, J., Lone, T. A. & Berber-Jiminez, M. D. (1993). Protein-saponin interaction and its influence on blood lipids. Journal of Agricultural Food Chemistry 41, 12871291.CrossRefGoogle Scholar
Price, K. R., Johnson, I. T. & Fenwick, G. R. (1987). The chemistry and biological signiscance of saponins in foods and feeding stuffs. CRC Critical Reviews on Food Science and Nutrition 26, 27135.CrossRefGoogle Scholar
Querishi, A. A., Burger, W. C., Peterson, D. M. & Eison, C. E. (1986). The structure of an inhibitor of cholesterol biosynthesis isolated from barley. Journal of Biological Chemistry 362, 1054410550.CrossRefGoogle Scholar
Ripsin, C. M. & Keenan, J. M. (1992). The effects of dietary oat products on blood cholesterol. Trends in Food Science and Technology 3, 137141.CrossRefGoogle Scholar
Rotenberg, S. & Eggum, B. O. (1986). The effect of purified pectins with and without saponins in the diet on selected lipid parameters in liver and blood plasma of rats. Acta Agriculrurae Scandinavica 36, 211216.CrossRefGoogle Scholar
Shinnick, F. L., Ink, S. L. & Marlett, J. A. (1990). Dose response to a dietary oat bran fraction in cholesterol-fed rats. Journal of Nutrition 120, 561568.CrossRefGoogle ScholarPubMed
Southon, S., Johnson, I. T., Gee, J. M. & Price, K. R. (1988). The effect of gypsophila saponins in the diet on mineral status and plasma cholesterol concentration in the rat. British Journal of Nutrition 59, 4955.CrossRefGoogle ScholarPubMed
Story, J. A., LePage, S. L., Petro, M. S., West, L. G., Cassidy, M. M., Lightfoot, F. G. & Vahouny, G. L. (1984). Interactions of alfalfa plant and sprout saponins with cholesterol in vitro and in cholesterol-fed rats. American Journal of Clinical Nutrition 39, 917929.CrossRefGoogle ScholarPubMed
Temmerman, A. M., Vonk, R. J., Niezen-Koning, K., Berger, R. & Fernandes, J. (1988). Long-term and short-term effects of dietary cholesterol and fats in the Mongolian gerbil. Annals of Nutrition & Metabolism 32, 177185.CrossRefGoogle ScholarPubMed
Topping, D. L., Storer, G. B., Calbert, G. D., Illman, R. J., Oakenfull, D. G. & Weller, R. A. (1980). Effects of dietary saponins on faecal bile acids and neutral sterols, plasma lipids, and lipoprotein turnover in the pig. American Journal of Clinical Nutrition 33, 783786.CrossRefGoogle ScholarPubMed
Tschesche, R. & Lauren, P. (1971). Avenacoside B, ein sweites bisdesmosidisches Steroidsaponin aus Avena sativa (A second bisdesmosidic steroid saponin from Avena sativa). Chemische Berichtung 104, 35493555.CrossRefGoogle Scholar
Tschesche, R., Tamer, M., Fehlhaber, H.-W. & Wulff, G. (1969). Avenacoside A, ein bisdesmosidisches Steroidsaponin aus Avena surivu (A bisdesmosidic steroid saponin from Avena sativa). Chemische Berichtung 102, 20722082.CrossRefGoogle Scholar