Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T04:57:05.232Z Has data issue: false hasContentIssue false

Effects of arginine and lysine addition to casein and soya-bean protein on serum lipids, apolipoproteins, insulin and glucagon in rats*

Published online by Cambridge University Press:  09 March 2007

M. Sugano
Affiliation:
Laboratory of Nutrition Chemistry, Kyushu University School of Agriculture, Fukuoka 812, Japan
N. Ishiwaki
Affiliation:
Laboratory of Nutrition Chemistry, Kyushu University School of Agriculture, Fukuoka 812, Japan
Y. Nagata
Affiliation:
Laboratory of Nutrition Chemistry, Kyushu University School of Agriculture, Fukuoka 812, Japan
K. Imaizumi
Affiliation:
Laboratory of Nutrition Chemistry, Kyushu University School of Agriculture, Fukuoka 812, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of variation in arginine: lysine on the relative cholesterolaemic effects of dietary soya-bean protein and casein was studied. Male rats received semi-purified diets containing soya-bean protein isolate or casein supplemented respectively with varingamounts of lysine or arginine for 40 d and blood samples were taken after a 5 h fast.

2. Neither the addition of arginine to casein nor lysine to soya-bean protein modifiedthe intrinsic effect of these proteins on serum cholesterol.

3. Serum triglyceride levels tended to rise with increasing amounts of lysine supplementation. The opposite trend was obtained with arginine supplementation.

4. Casein caused an increase in the concentration of serum insulin, but not glucagon. The glucagon level was increased proportionately with increasing amounts of arginine, while the addition of lysine showed no effect. The effects of added amino acids on serum insulin were inconclusive.

5. There was a parallel increase in serum apo E and glucagon in response to arginine supplementation, while lysine supplementation increased serum apo E.

6. Thus, arginine:lysine was more effective in regulating serum triglyceride than serum cholesterol. Insulin was associated with different effects of these proteins on serum lipids.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Alaupovic, P., Curry, M. D. & McConathy, W. J. (1978). In International Conference of Atherosclerosis, p. 109 [Carlson, L. A., Paoletti, R., Sirtori, C. R. and Weber, G., editors]. New York: Raven Press.Google Scholar
Assan, R., Attali, J. R., Ballerio, G., Boillot, J. & Girard, A. J. (1977). Diabetes 26, 300.CrossRefGoogle Scholar
Carroll, K. K. (1981). J. Am. Oil Chem. Soc. 58, 416.CrossRefGoogle Scholar
Cittadini, D., Pietropalo, C., DeCristofaro, D. & D'Ayjello-Caracciole, M. (1964). Nature, Lond. 203, 643.CrossRefGoogle Scholar
Czarnecki, S. & Kritchevsky, D. (1980). J. Am. Oil Chem. Soc. 56, 388A.Google Scholar
Dugan, R. E., Ness, G. C., Lakshmann, M. R., Nepokroeff, C. M. & Porter, J. W. (1974). Archs. Biochem. Biophys. 161, 499.CrossRefGoogle Scholar
Eaton, R. (1973 a). Metabolism. 22, 763.CrossRefGoogle Scholar
Eaton, R. (1973 b). J. Lipid Res. 14, 312.CrossRefGoogle Scholar
Eisenstein, A. B., Strack, I., Gallo-Torres, H., Georgiadis, A. & Miller, O. N. (1979). Am. J. Physiol. 236, E20.Google Scholar
Eklund, A. & Sjöblom, L. (1980). J. Nutr., 110, 2321.CrossRefGoogle Scholar
Fajans, S. S., Floyd, J. C. Jr., Knopf, R. F. & Conn, J. W. (1968). Recent Progr. Hormone Res. 23, 617.Google Scholar
Fisher, R. A. (1970). Statistical Methods for Research Workers, 14th ed. p. 140. Edinburgh: Oliver & Boyd.Google Scholar
Hevia, P., Frank, W. K., Edward, A. U. & Visek, W. J. (1980). J. Nutr. 110, 1224.CrossRefGoogle Scholar
Huff, M. W. & Carroll, K. K. (1980). J. Nutr. 110, 1676.CrossRefGoogle Scholar
Imaizumi, K., Murata, M. & Sugano, M. (1982). J. Nutr. Sci. Vitam. 28, 281.CrossRefGoogle Scholar
Kritchevsky, D. (1979). J. Am. Oil Chem. Soc. 56, 135.CrossRefGoogle Scholar
Nagata, Y., Imaizumi, K. & Sugano, M. (1980). Br. J. Nutr. 44, 113.CrossRefGoogle Scholar
Nagata, Y., Tanaka, K. & Sugano, M. (1981 a). Br. J. Nutr. 45, 233.CrossRefGoogle Scholar
Nagata, Y., Tanaka, K. & Sugano, M. (1981 b). J. Nutr. Sci. Vitam. 27, 583.CrossRefGoogle Scholar
Noseda, G. & Fragiacomo, C. (1980). In Diet and Drugs in Atherosclerosis, p. 61 [Noseda, G., Lewis, B. and Paoletti, R., editors]. New York: Raven Press.Google Scholar
Noseda, G., Fragiacomo, C., Descovich, G. C., Fumagalli, R., Bernini, F. & Sirtori, C. R. (1980). In Drugs Affecting Lipid Metabolism, p. 355 [Fumagalli, R., Kritchevsky, D., and Paoletti, R., editors]. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Okita, T. & Sugano, M. (1981). J. Nutr. Sci. Vitam. 27, 379.CrossRefGoogle Scholar
Reaven, G. M., Lerner, R. L., Stern, M. P. & Farquhar, J. W. (1967). J. clin. Invest. 46, 1756.CrossRefGoogle Scholar
Scheffé, H. (1959). The Analysis of Variance, p. 55. London: Wiley & Sons.Google Scholar
Schimke, R. T. (1970). Meth. Enzym, 17A, 313.CrossRefGoogle Scholar
Shade, D. S., Woodside, W. & Eaton, R. P. (1979). Metabolism 28, 874.CrossRefGoogle Scholar
Shore, B. & Shore, V. (1974). Biochemistry 13, 1579.CrossRefGoogle Scholar
Sleisenger, M. H. & Kim, Y. S. (1979). New Engl. J. Med. 300, 659.CrossRefGoogle Scholar
Vlavdimirov, Y. A., Olenew, V. I., Suslove, T. B. & Cheremisina, Z. P. (1980). Adv. Lipid Res. 29, 99.Google Scholar
Yagi, K. (1976). Biochem. Med. 15, 212.CrossRefGoogle Scholar
Yamashita, M., Arai, S., Tsai, S.-J. & Fujimaki, M. (1971). J. Agr. Food Chem. 19, 1151.CrossRefGoogle Scholar